/* * File: Hermepass.cpp * * Version: 1.0 * * Created: 3/15/17 * * Copyright: Copyright © 2017 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Hermepass.cpp =============================================================================*/ #include "Hermepass.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Hermepass) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::Hermepass //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Hermepass::Hermepass(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Hermepass::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Hermepass::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Hermepass::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Hermepass::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Hermepass::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Hermepass::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____HermepassEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::HermepassKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Hermepass::HermepassKernel::Reset() { iirA = 0.0; iirB = 0.0; iirC = 0.0; iirD = 0.0; iirE = 0.0; iirF = 0.0; iirG = 0.0; iirH = 0.0; fpNShape = 0.0; fpFlip = true; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Hermepass::HermepassKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Hermepass::HermepassKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); long double fpOld = 0.618033988749894848204586; //golden ratio! long double fpNew = 1.0 - fpOld; Float64 rangescale = 0.1 / overallscale; Float64 cutoff = pow(GetParameter( kParam_One ),3); Float64 slope = pow(GetParameter( kParam_Two ),3) * 6.0; Float64 newA = cutoff * rangescale; Float64 newB = newA; //other part of interleaved IIR is the same Float64 newC = cutoff * rangescale; //first extra pole is the same cutoff = (cutoff * fpOld) + (0.00001 * fpNew); Float64 newD = cutoff * rangescale; cutoff = (cutoff * fpOld) + (0.00001 * fpNew); Float64 newE = cutoff * rangescale; cutoff = (cutoff * fpOld) + (0.00001 * fpNew); Float64 newF = cutoff * rangescale; cutoff = (cutoff * fpOld) + (0.00001 * fpNew); Float64 newG = cutoff * rangescale; cutoff = (cutoff * fpOld) + (0.00001 * fpNew); Float64 newH = cutoff * rangescale; //converge toward the unvarying fixed cutoff value Float64 oldA = 1.0 - newA; Float64 oldB = 1.0 - newB; Float64 oldC = 1.0 - newC; Float64 oldD = 1.0 - newD; Float64 oldE = 1.0 - newE; Float64 oldF = 1.0 - newF; Float64 oldG = 1.0 - newG; Float64 oldH = 1.0 - newH; Float64 polesC; Float64 polesD; Float64 polesE; Float64 polesF; Float64 polesG; Float64 polesH; polesC = slope; if (slope > 1.0) polesC = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0; polesD = slope; if (slope > 1.0) polesD = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0; polesE = slope; if (slope > 1.0) polesE = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0; polesF = slope; if (slope > 1.0) polesF = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0; polesG = slope; if (slope > 1.0) polesG = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0; polesH = slope; if (slope > 1.0) polesH = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0; //each one will either be 0.0, the fractional slope value, or 1 long double inputSample; Float64 tempSample; Float64 correction; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } tempSample = inputSample; if (fpFlip) { iirA = (iirA * oldA) + (tempSample * newA); tempSample -= iirA; correction = iirA; } else { iirB = (iirB * oldB) + (tempSample * newB); tempSample -= iirB; correction = iirB; } iirC = (iirC * oldC) + (tempSample * newC); tempSample -= iirC; iirD = (iirD * oldD) + (tempSample * newD); tempSample -= iirD; iirE = (iirE * oldE) + (tempSample * newE); tempSample -= iirE; iirF = (iirF * oldF) + (tempSample * newF); tempSample -= iirF; iirG = (iirG * oldG) + (tempSample * newG); tempSample -= iirG; iirH = (iirH * oldH) + (tempSample * newH); tempSample -= iirH; //set up all the iir filters in case they are used if (polesC == 1.0) correction += iirC; if (polesC > 0.0 && polesC < 1.0) correction += (iirC * polesC); if (polesD == 1.0) correction += iirD; if (polesD > 0.0 && polesD < 1.0) correction += (iirD * polesD); if (polesE == 1.0) correction += iirE; if (polesE > 0.0 && polesE < 1.0) correction += (iirE * polesE); if (polesF == 1.0) correction += iirF; if (polesF > 0.0 && polesF < 1.0) correction += (iirF * polesF); if (polesG == 1.0) correction += iirG; if (polesG > 0.0 && polesG < 1.0) correction += (iirG * polesG); if (polesH == 1.0) correction += iirH; if (polesH > 0.0 && polesH < 1.0) correction += (iirH * polesH); //each of these are added directly if they're fully engaged, //multiplied by 0-1 if they are the interpolated one, or skipped if they are beyond the interpolated one. //the purpose is to do all the math at the floating point exponent nearest to the tiny value in use. //also, it's formatted that way to easily substitute the next variable: this could be written as a loop //with everything an array value. However, this makes just as much sense for this few poles. inputSample -= correction; fpFlip = !fpFlip; //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }