/* * File: DubCenter.cpp * * Version: 1.0 * * Created: 10/14/18 * * Copyright: Copyright © 2018 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= DubCenter.cpp =============================================================================*/ #include "DubCenter.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(DubCenter) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::DubCenter //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DubCenter::DubCenter(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); SetParameter(kParam_Six, kDefaultValue_ParamSix ); SetParameter(kParam_Seven, kDefaultValue_ParamSeven ); SetParameter(kParam_Eight, kDefaultValue_ParamEight ); SetParameter(kParam_Nine, kDefaultValue_ParamNine ); SetParameter(kParam_Ten, kDefaultValue_ParamTen ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult DubCenter::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult DubCenter::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; case kParam_Six: AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSix; break; case kParam_Seven: AUBase::FillInParameterName (outParameterInfo, kParameterSevenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSeven; break; case kParam_Eight: AUBase::FillInParameterName (outParameterInfo, kParameterEightName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamEight; break; case kParam_Nine: AUBase::FillInParameterName (outParameterInfo, kParameterNineName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamNine; break; case kParam_Ten: AUBase::FillInParameterName (outParameterInfo, kParameterTenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTen; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult DubCenter::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // state that plugin supports only stereo-in/stereo-out processing UInt32 DubCenter::SupportedNumChannels(const AUChannelInfo ** outInfo) { if (outInfo != NULL) { static AUChannelInfo info; info.inChannels = 2; info.outChannels = 2; *outInfo = &info; } return 1; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult DubCenter::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // DubCenter::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult DubCenter::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____DubCenterEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::DubCenterKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult DubCenter::Reset(AudioUnitScope inScope, AudioUnitElement inElement) { WasNegative = false; SubOctave = false; flip = false; bflip = 0; iirDriveSampleAL = 0.0; iirDriveSampleBL = 0.0; iirDriveSampleCL = 0.0; iirDriveSampleDL = 0.0; iirDriveSampleEL = 0.0; iirDriveSampleFL = 0.0; iirDriveSampleAR = 0.0; iirDriveSampleBR = 0.0; iirDriveSampleCR = 0.0; iirDriveSampleDR = 0.0; iirDriveSampleER = 0.0; iirDriveSampleFR = 0.0; iirHeadBumpA = 0.0; iirHeadBumpB = 0.0; iirHeadBumpC = 0.0; iirSubBumpA = 0.0; iirSubBumpB = 0.0; iirSubBumpC = 0.0; lastHeadBump = 0.0; lastSubBump = 0.0; iirSampleA = 0.0; iirSampleB = 0.0; iirSampleC = 0.0; iirSampleD = 0.0; iirSampleE = 0.0; iirSampleF = 0.0; iirSampleG = 0.0; iirSampleH = 0.0; iirSampleI = 0.0; iirSampleJ = 0.0; iirSampleK = 0.0; iirSampleL = 0.0; iirSampleM = 0.0; iirSampleN = 0.0; iirSampleO = 0.0; iirSampleP = 0.0; iirSampleQ = 0.0; iirSampleR = 0.0; iirSampleS = 0.0; iirSampleT = 0.0; iirSampleU = 0.0; iirSampleV = 0.0; iirSampleW = 0.0; iirSampleX = 0.0; iirSampleY = 0.0; iirSampleZ = 0.0; oscGate = 1.0; fpNShapeL = 0.0; fpNShapeR = 0.0; return noErr; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DubCenter::ProcessBufferLists //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OSStatus DubCenter::ProcessBufferLists(AudioUnitRenderActionFlags & ioActionFlags, const AudioBufferList & inBuffer, AudioBufferList & outBuffer, UInt32 inFramesToProcess) { Float32 * inputL = (Float32*)(inBuffer.mBuffers[0].mData); Float32 * inputR = (Float32*)(inBuffer.mBuffers[1].mData); Float32 * outputL = (Float32*)(outBuffer.mBuffers[0].mData); Float32 * outputR = (Float32*)(outBuffer.mBuffers[1].mData); UInt32 nSampleFrames = inFramesToProcess; long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 driveone = pow(GetParameter( kParam_One )*3.0,2); Float64 driveoutput = GetParameter( kParam_Two ); Float64 iirAmount = ((GetParameter( kParam_Three )*0.33)+0.1)/overallscale; Float64 ataLowpassL; Float64 ataLowpassR; Float64 ataLowpass; Float64 randy; Float64 invrandy; Float64 HeadBump = 0.0; Float64 BassGain = GetParameter( kParam_Four ) * 0.1; Float64 HeadBumpFreq = ((GetParameter( kParam_Five )*0.1)+0.0001)/overallscale; Float64 iirBmount = HeadBumpFreq/44.1; Float64 altBmount = 1.0 - iirBmount; Float64 BassOutGain = GetParameter( kParam_Six ); Float64 SubBump = 0.0; Float64 SubGain = GetParameter( kParam_Seven ) * 0.1; Float64 SubBumpFreq = ((GetParameter( kParam_Eight )*0.1)+0.0001)/overallscale; Float64 iirCmount = SubBumpFreq/44.1; Float64 altCmount = 1.0 - iirCmount; Float64 SubOutGain = GetParameter( kParam_Nine ); Float64 clamp = 0.0; Float64 out; Float64 fuzz = 0.111; Float64 wet = GetParameter( kParam_Ten ); Float64 dry = 1.0-wet; Float64 glitch = 0.60; Float64 tempSample; while (nSampleFrames-- > 0) { long double inputSampleL = *inputL; long double inputSampleR = *inputR; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; // here's the plan. // Grind Boost // Grind Output Level // Bass Split Freq // Bass Drive // Bass Voicing // Bass Output Level // Sub Oct Drive // Sub Voicing // Sub Output Level // Dry/Wet oscGate += fabs((inputSampleL + inputSampleR) * 5.0); oscGate -= 0.001; if (oscGate > 1.0) oscGate = 1.0; if (oscGate < 0) oscGate = 0; //got a value that only goes down low when there's silence or near silence on input clamp = 1.0-oscGate; clamp *= 0.00001; //set up the thing to choke off oscillations- belt and suspenders affair if (flip) { tempSample = inputSampleL; iirDriveSampleAL = (iirDriveSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleAL; iirDriveSampleCL = (iirDriveSampleCL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleCL; iirDriveSampleEL = (iirDriveSampleEL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleEL; ataLowpassL = tempSample - inputSampleL; tempSample = inputSampleR; iirDriveSampleAR = (iirDriveSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleAR; iirDriveSampleCR = (iirDriveSampleCR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleCR; iirDriveSampleER = (iirDriveSampleER * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleER; ataLowpassR = tempSample - inputSampleR; } else { tempSample = inputSampleL; iirDriveSampleBL = (iirDriveSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleBL; iirDriveSampleDL = (iirDriveSampleDL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleDL; iirDriveSampleFL = (iirDriveSampleFL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleFL; ataLowpassL = tempSample - inputSampleL; tempSample = inputSampleR; iirDriveSampleBR = (iirDriveSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleBR; iirDriveSampleDR = (iirDriveSampleDR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleDR; iirDriveSampleFR = (iirDriveSampleFR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleFR; ataLowpassR = tempSample - inputSampleR; } //highpass section if (inputSampleL > 1.0) {inputSampleL = 1.0;} if (inputSampleL < -1.0) {inputSampleL = -1.0;} if (inputSampleR > 1.0) {inputSampleR = 1.0;} if (inputSampleR < -1.0) {inputSampleR = -1.0;} out = driveone; while (out > glitch) { out -= glitch; inputSampleL -= (inputSampleL * (fabs(inputSampleL) * glitch) * (fabs(inputSampleL) * glitch) ); inputSampleL *= (1.0+glitch); } //that's taken care of the really high gain stuff inputSampleL -= (inputSampleL * (fabs(inputSampleL) * out) * (fabs(inputSampleL) * out) ); inputSampleL *= (1.0+out); out = driveone; while (out > glitch) { out -= glitch; inputSampleR -= (inputSampleR * (fabs(inputSampleR) * glitch) * (fabs(inputSampleR) * glitch) ); inputSampleR *= (1.0+glitch); } //that's taken care of the really high gain stuff inputSampleR -= (inputSampleR * (fabs(inputSampleR) * out) * (fabs(inputSampleR) * out) ); inputSampleR *= (1.0+out); ataLowpass = (ataLowpassL + ataLowpassR) / 2.0; if (ataLowpass > 0) {if (WasNegative){SubOctave = not SubOctave;} WasNegative = false;} else {WasNegative = true;} //set up polarities for sub-bass version randy = (rand()/(double)RAND_MAX)*fuzz; //0 to 1 the noise, may not be needed invrandy = (1.0-randy); randy /= 2.0; //set up the noise iirSampleA = (iirSampleA * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleA; iirSampleB = (iirSampleB * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleB; iirSampleC = (iirSampleC * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleC; iirSampleD = (iirSampleD * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleD; iirSampleE = (iirSampleE * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleE; iirSampleF = (iirSampleF * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleF; iirSampleG = (iirSampleG * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleG; iirSampleH = (iirSampleH * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleH; iirSampleI = (iirSampleI * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleI; iirSampleJ = (iirSampleJ * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleJ; iirSampleK = (iirSampleK * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleK; iirSampleL = (iirSampleL * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleL; iirSampleM = (iirSampleM * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleM; iirSampleN = (iirSampleN * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleN; iirSampleO = (iirSampleO * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleO; iirSampleP = (iirSampleP * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleP; iirSampleQ = (iirSampleQ * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleQ; iirSampleR = (iirSampleR * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleR; iirSampleS = (iirSampleS * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleS; iirSampleT = (iirSampleT * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleT; iirSampleU = (iirSampleU * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleU; iirSampleV = (iirSampleV * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleV; switch (bflip) { case 1: iirHeadBumpA += (ataLowpass * BassGain); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpA > 0) iirHeadBumpA -= clamp; if (iirHeadBumpA < 0) iirHeadBumpA += clamp; HeadBump = iirHeadBumpA; break; case 2: iirHeadBumpB += (ataLowpass * BassGain); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpB > 0) iirHeadBumpB -= clamp; if (iirHeadBumpB < 0) iirHeadBumpB += clamp; HeadBump = iirHeadBumpB; break; case 3: iirHeadBumpC += (ataLowpass * BassGain); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); if (iirHeadBumpC > 0) iirHeadBumpC -= clamp; if (iirHeadBumpC < 0) iirHeadBumpC += clamp; HeadBump = iirHeadBumpC; break; } iirSampleW = (iirSampleW * altBmount) + (HeadBump * iirBmount); HeadBump -= iirSampleW; iirSampleX = (iirSampleX * altBmount) + (HeadBump * iirBmount); HeadBump -= iirSampleX; SubBump = HeadBump; iirSampleY = (iirSampleY * altCmount) + (SubBump * iirCmount); SubBump -= iirSampleY; SubBump = fabs(SubBump); if (SubOctave == false) {SubBump = -SubBump;} switch (bflip) { case 1: iirSubBumpA += (SubBump * SubGain); iirSubBumpA -= (iirSubBumpA * iirSubBumpA * iirSubBumpA * SubBumpFreq); iirSubBumpA = (invrandy * iirSubBumpA) + (randy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpA > 0) iirSubBumpA -= clamp; if (iirSubBumpA < 0) iirSubBumpA += clamp; SubBump = iirSubBumpA; break; case 2: iirSubBumpB += (SubBump * SubGain); iirSubBumpB -= (iirSubBumpB * iirSubBumpB * iirSubBumpB * SubBumpFreq); iirSubBumpB = (randy * iirSubBumpA) + (invrandy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpB > 0) iirSubBumpB -= clamp; if (iirSubBumpB < 0) iirSubBumpB += clamp; SubBump = iirSubBumpB; break; case 3: iirSubBumpC += (SubBump * SubGain); iirSubBumpC -= (iirSubBumpC * iirSubBumpC * iirSubBumpC * SubBumpFreq); iirSubBumpC = (randy * iirSubBumpA) + (randy * iirSubBumpB) + (invrandy * iirSubBumpC); if (iirSubBumpC > 0) iirSubBumpC -= clamp; if (iirSubBumpC < 0) iirSubBumpC += clamp; SubBump = iirSubBumpC; break; } iirSampleZ = (iirSampleZ * altCmount) + (SubBump * iirCmount); SubBump -= iirSampleZ; inputSampleL *= driveoutput; //start with the drive section then add lows and subs inputSampleR *= driveoutput; //start with the drive section then add lows and subs inputSampleL += ((HeadBump + lastHeadBump) * BassOutGain); inputSampleL += ((SubBump + lastSubBump) * SubOutGain); inputSampleR += ((HeadBump + lastHeadBump) * BassOutGain); inputSampleR += ((SubBump + lastSubBump) * SubOutGain); lastHeadBump = HeadBump; lastSubBump = SubBump; if (wet != 1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //Dry/Wet control, defaults to the last slider flip = !flip; bflip++; if (bflip < 1 || bflip > 3) bflip = 1; //stereo 32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((Float32)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *outputL = inputSampleL; *outputR = inputSampleR; //direct stereo out inputL += 1; inputR += 1; outputL += 1; outputR += 1; } return noErr; }