/* * File: Crystal.cpp * * Version: 1.0 * * Created: 12/9/18 * * Copyright: Copyright © 2018 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Crystal.cpp =============================================================================*/ #include "Crystal.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Crystal) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::Crystal //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Crystal::Crystal(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Crystal::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Crystal::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 3.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Crystal::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Crystal::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Crystal::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Crystal::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____CrystalEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::CrystalKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Crystal::CrystalKernel::Reset() { for(int count = 0; count < 34; count++) {b[count] = 0;} lastSample = 0.0; fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Crystal::CrystalKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Crystal::CrystalKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 threshold = GetParameter( kParam_One ); Float64 hardness; Float64 breakup = (1.0-(threshold/2.0))*3.14159265358979; Float64 bridgerectifier; Float64 sqdrive = GetParameter( kParam_Two ); if (sqdrive > 1.0) sqdrive *= sqdrive; sqdrive = sqrt(sqdrive); Float64 indrive = GetParameter( kParam_Three ); if (indrive > 1.0) indrive *= indrive; indrive *= (1.0-(0.1695*sqdrive)); //no gain loss of convolution for APIcolypse //calibrate this to match noise level with character at 1.0 //you get for instance 0.819 and 1.0-0.819 is 0.181 Float64 randy; Float64 outlevel = GetParameter( kParam_Four ); if (threshold < 1) hardness = 1.0 / (1.0-threshold); else hardness = 999999999999999999999.0; //set up hardness to exactly fill gap between threshold and 0db //if threshold is literally 1 then hardness is infinite, so we make it very big while (nSampleFrames-- > 0) { long double inputSample = *sourceP; static int noisesource = 0; int residue; double applyresidue; noisesource = noisesource % 1700021; noisesource++; residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample += applyresidue; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { inputSample -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss inputSample *= indrive; //calibrated to match gain through convolution and -0.3 correction if (sqdrive > 0.0){ b[23] = b[22]; b[22] = b[21]; b[21] = b[20]; b[20] = b[19]; b[19] = b[18]; b[18] = b[17]; b[17] = b[16]; b[16] = b[15]; b[15] = b[14]; b[14] = b[13]; b[13] = b[12]; b[12] = b[11]; b[11] = b[10]; b[10] = b[9]; b[9] = b[8]; b[8] = b[7]; b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = inputSample * sqdrive; inputSample += (b[1] * (0.38856694371895023 + (0.14001177830115491*fabs(b[1])))); inputSample -= (b[2] * (0.17469488984546111 + (0.05204541941091459*fabs(b[2])))); inputSample += (b[3] * (0.11643521461774288 - (0.01193121216518472*fabs(b[3])))); inputSample -= (b[4] * (0.08874416268268183 - (0.05867502375036486*fabs(b[4])))); inputSample += (b[5] * (0.07222999223073785 - (0.08519974113692971*fabs(b[5])))); inputSample -= (b[6] * (0.06103207678880003 - (0.09230674983449150*fabs(b[6])))); inputSample += (b[7] * (0.05277389277465404 - (0.08487342372497046*fabs(b[7])))); inputSample -= (b[8] * (0.04631144388636078 - (0.06976851898821038*fabs(b[8])))); inputSample += (b[9] * (0.04102721072495113 - (0.05337974329110802*fabs(b[9])))); inputSample -= (b[10] * (0.03656047655964371 - (0.03990914278458497*fabs(b[10])))); inputSample += (b[11] * (0.03268677450573373 - (0.03090433934018759*fabs(b[11])))); inputSample -= (b[12] * (0.02926012259262895 - (0.02585223214266682*fabs(b[12])))); inputSample += (b[13] * (0.02618257163789973 - (0.02326667039588473*fabs(b[13])))); inputSample -= (b[14] * (0.02338568277879992 - (0.02167067760829789*fabs(b[14])))); inputSample += (b[15] * (0.02082142324645262 - (0.02013392273267951*fabs(b[15])))); inputSample -= (b[16] * (0.01845525966656259 - (0.01833038930966512*fabs(b[16])))); inputSample += (b[17] * (0.01626113504980445 - (0.01631893218593511*fabs(b[17])))); inputSample -= (b[18] * (0.01422084088669267 - (0.01427828125219885*fabs(b[18])))); inputSample += (b[19] * (0.01231993595709338 - (0.01233991521342998*fabs(b[19])))); inputSample -= (b[20] * (0.01054774630451013 - (0.01054774630542346*fabs(b[20])))); inputSample += (b[21] * (0.00889548162355088 - (0.00889548162263755*fabs(b[21])))); inputSample -= (b[22] * (0.00735749099304526 - (0.00735749099395860*fabs(b[22])))); inputSample += (b[23] * (0.00592812350468000 - (0.00592812350376666*fabs(b[23])))); } //the Character plugins as individual processors did this. BussColors applies an averaging factor to produce // more of a consistent variation between soft and loud convolutions. For years I thought this code was a //mistake and did nothing, but in fact what it's doing is producing slightly different curves for every single //convolution kernel location: this will be true of the Character individual plugins as well. if (fabs(inputSample) > threshold) { bridgerectifier = (fabs(inputSample)-threshold)*hardness; //skip flat area if any, scale to distortion limit if (bridgerectifier > breakup) bridgerectifier = breakup; //max value for sine function, 'breakup' modeling for trashed console tone //more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag bridgerectifier = sin(bridgerectifier)/hardness; //do the sine factor, scale back to proper amount if (inputSample > 0) inputSample = bridgerectifier+threshold; else inputSample = -(bridgerectifier+threshold); } //otherwise we leave it untouched by the overdrive stuff //this is the notorious New Channel Density algorithm. It's much less popular than the original Density, //because it introduces a point where the saturation 'curve' changes from straight to curved. //People don't like these discontinuities, but you can use them for effect or to grit up the sound. randy = ((rand()/(double)RAND_MAX)*0.022); bridgerectifier = ((inputSample*(1-randy))+(lastSample*randy)) * outlevel; lastSample = inputSample; inputSample = bridgerectifier; //applies a tiny 'fuzz' to highs: from original Crystal. //This is akin to the old Chrome Oxide plugin, applying a fuzz to only the slews. The noise only appears //when current and old samples are different from each other, otherwise you can't tell it's there. //This is not only during silence but the tops of low frequency waves: it scales down to affect lows more gently. //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }