/* * File: Compresaturator.cpp * * Version: 1.0 * * Created: 11/30/18 * * Copyright: Copyright © 2018 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Compresaturator.cpp =============================================================================*/ #include "Compresaturator.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Compresaturator) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::Compresaturator //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Compresaturator::Compresaturator(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Compresaturator::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Compresaturator::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Percent; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 100.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterThreeUnit; outParameterInfo.minValue = 50.0; outParameterInfo.maxValue = 5000.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Compresaturator::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Compresaturator::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Compresaturator::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Compresaturator::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____CompresaturatorEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::CompresaturatorKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Compresaturator::CompresaturatorKernel::Reset() { for(int count = 0; count < 10990; count++) {d[count] = 0.0;} dCount = 0; lastWidth = 500; padFactor = 0; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Compresaturator::CompresaturatorKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Compresaturator::CompresaturatorKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 inputgain = pow(10.0,GetParameter( kParam_One )/20.0); Float64 satComp = GetParameter( kParam_Two ) / 50; int widestRange = GetParameter( kParam_Three ); satComp += (((Float64)widestRange/3000.0)*satComp); //set the max wideness of comp zone, minimum range boosted (too much?) Float64 output = GetParameter( kParam_Four ); Float64 wet = GetParameter( kParam_Five ); while (nSampleFrames-- > 0) { long double inputSample = *sourceP; long double temp = inputSample; static int noisesource = 0; int residue; double applyresidue; noisesource = noisesource % 1700021; noisesource++; residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample += applyresidue; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { inputSample -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySample = inputSample; if (dCount < 1 || dCount > 5000) {dCount = 5000;} Float64 variSpeed = 1.0 + ((padFactor/lastWidth)*satComp); if (variSpeed < 1.0) variSpeed = 1.0; Float64 totalgain = inputgain / variSpeed; if (totalgain != 1.0) { inputSample *= totalgain; if (totalgain < 1.0) { temp *= totalgain; //no boosting beyond unity please } } long double bridgerectifier = fabs(inputSample); Float64 overspill = 0; int targetWidth = widestRange; //we now have defaults and an absolute input value to work with if (bridgerectifier < 0.01) padFactor *= 0.9999; //in silences we bring back padFactor if it got out of hand if (bridgerectifier > 1.57079633) { bridgerectifier = 1.57079633; targetWidth = 8; } //if our output's gone beyond saturating to distorting, we begin chasing the //buffer size smaller. Anytime we don't have that, we expand (smoothest sound, only adding to an increasingly subdivided buffer) bridgerectifier = sin(bridgerectifier); if (inputSample > 0) { inputSample = bridgerectifier; overspill = temp - bridgerectifier; } if (inputSample < 0) { inputSample = -bridgerectifier; overspill = (-temp) - bridgerectifier; } //drive section d[dCount + 5000] = d[dCount] = overspill * satComp; //we now have a big buffer to draw from, which is always positive amount of overspill dCount--; padFactor += d[dCount]; Float64 randy = (rand()/(double)RAND_MAX); if ((targetWidth*randy) > lastWidth) { //we are expanding the buffer so we don't remove this trailing sample lastWidth += 1; } else { padFactor -= d[dCount+lastWidth]; //zero change, or target is smaller and we are shrinking if (targetWidth < lastWidth) { lastWidth -= 1; if (lastWidth < 2) lastWidth = 2; //sanity check as randy can give us target zero padFactor -= d[dCount+lastWidth]; } } //variable attack/release speed more rapid as comp intensity increases //implemented in a way where we're repeatedly not altering the buffer as it expands, which makes the comp artifacts smoother if (padFactor < 0) padFactor = 0; if (output < 1.0) { inputSample *= output; } if (wet < 1.0) { inputSample = (inputSample * wet) + (drySample * (1.0-wet)); } //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }