/* * File: Cider.cpp * * Version: 1.0 * * Created: 1/11/20 * * Copyright: Copyright © 2020 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Cider.cpp =============================================================================*/ #include "Cider.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Cider) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::Cider //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cider::Cider(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Cider::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Cider::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 3.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 3.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Cider::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Cider::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Cider::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Cider::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____CiderEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::CiderKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Cider::CiderKernel::Reset() { for(int count = 0; count < 34; count++) {b[count] = 0;} lastSample = 0.0; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Cider::CiderKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Cider::CiderKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 threshold = GetParameter( kParam_One ); Float64 hardness; Float64 breakup = (1.0-(threshold/2.0))*3.14159265358979; Float64 bridgerectifier; Float64 sqdrive = GetParameter( kParam_Two ); if (sqdrive > 1.0) sqdrive *= sqdrive; sqdrive = sqrt(sqdrive); Float64 indrive = GetParameter( kParam_Three ); if (indrive > 1.0) indrive *= indrive; indrive *= (1.0-(0.216*sqdrive)); //correct for gain loss of convolution //calibrate this to match noise level with character at 1.0 //you get for instance 0.819 and 1.0-0.819 is 0.181 Float64 randy; Float64 outlevel = GetParameter( kParam_Four ); if (threshold < 1) hardness = 1.0 / (1.0-threshold); else hardness = 999999999999999999999.0; //set up hardness to exactly fill gap between threshold and 0db //if threshold is literally 1 then hardness is infinite, so we make it very big while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; inputSample *= indrive; //calibrated to match gain through convolution and -0.3 correction if (sqdrive > 0.0){ b[33] = b[32]; b[32] = b[31]; b[31] = b[30]; b[30] = b[29]; b[29] = b[28]; b[28] = b[27]; b[27] = b[26]; b[26] = b[25]; b[25] = b[24]; b[24] = b[23]; b[23] = b[22]; b[22] = b[21]; b[21] = b[20]; b[20] = b[19]; b[19] = b[18]; b[18] = b[17]; b[17] = b[16]; b[16] = b[15]; b[15] = b[14]; b[14] = b[13]; b[13] = b[12]; b[12] = b[11]; b[11] = b[10]; b[10] = b[9]; b[9] = b[8]; b[8] = b[7]; b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = inputSample * sqdrive; inputSample += (b[1] * (0.61283288942201319 + (0.00024011410669522*fabs(b[1])))); inputSample -= (b[2] * (0.24036380659761222 - (0.00020789518206241*fabs(b[2])))); inputSample += (b[3] * (0.09104669761717916 + (0.00012829642741548*fabs(b[3])))); inputSample -= (b[4] * (0.02378290768554025 - (0.00017673646470440*fabs(b[4])))); inputSample -= (b[5] * (0.02832818490275965 - (0.00013536187747384*fabs(b[5])))); inputSample += (b[6] * (0.03268797679215937 + (0.00015035126653359*fabs(b[6])))); inputSample -= (b[7] * (0.04024464202655586 - (0.00015034923056735*fabs(b[7])))); inputSample += (b[8] * (0.01864890074318696 + (0.00014513281680642*fabs(b[8])))); inputSample -= (b[9] * (0.01632731954100322 - (0.00015509089075614*fabs(b[9])))); inputSample -= (b[10] * (0.00318907090555589 - (0.00014784812076550*fabs(b[10])))); inputSample -= (b[11] * (0.00208573465221869 - (0.00015350520779465*fabs(b[11])))); inputSample -= (b[12] * (0.00907033901519614 - (0.00015442964157250*fabs(b[12])))); inputSample -= (b[13] * (0.00199458794148013 - (0.00015595640046297*fabs(b[13])))); inputSample -= (b[14] * (0.00705979153201755 - (0.00015730069418051*fabs(b[14])))); inputSample -= (b[15] * (0.00429488975412722 - (0.00015743697943505*fabs(b[15])))); inputSample -= (b[16] * (0.00497724878704936 - (0.00016014760011861*fabs(b[16])))); inputSample -= (b[17] * (0.00506059305562353 - (0.00016194824072466*fabs(b[17])))); inputSample -= (b[18] * (0.00483432223285621 - (0.00016329050124225*fabs(b[18])))); inputSample -= (b[19] * (0.00495100420886005 - (0.00016297509798749*fabs(b[19])))); inputSample -= (b[20] * (0.00489319520555115 - (0.00016472839684661*fabs(b[20])))); inputSample -= (b[21] * (0.00489177657970308 - (0.00016791875866630*fabs(b[21])))); inputSample -= (b[22] * (0.00487900894707044 - (0.00016755993898534*fabs(b[22])))); inputSample -= (b[23] * (0.00486234009335561 - (0.00016968157345446*fabs(b[23])))); inputSample -= (b[24] * (0.00485737490288736 - (0.00017180713324431*fabs(b[24])))); inputSample -= (b[25] * (0.00484106070563455 - (0.00017251073661092*fabs(b[25])))); inputSample -= (b[26] * (0.00483219429408410 - (0.00017321683790891*fabs(b[26])))); inputSample -= (b[27] * (0.00482013597437550 - (0.00017392186866488*fabs(b[27])))); inputSample -= (b[28] * (0.00480949628051497 - (0.00017569098775602*fabs(b[28])))); inputSample -= (b[29] * (0.00479992055604049 - (0.00017746046369449*fabs(b[29])))); inputSample -= (b[30] * (0.00478750757986987 - (0.00017745630047554*fabs(b[30])))); inputSample -= (b[31] * (0.00477828651185740 - (0.00017958043287604*fabs(b[31])))); inputSample -= (b[32] * (0.00476906544384494 - (0.00018170456527653*fabs(b[32])))); inputSample -= (b[33] * (0.00475700712413634 - (0.00018099144598088*fabs(b[33]))));} //we apply the first samples of the Focusrite impulse- dynamically adjusted. if (fabs(inputSample) > threshold) { bridgerectifier = (fabs(inputSample)-threshold)*hardness; //skip flat area if any, scale to distortion limit if (bridgerectifier > breakup) bridgerectifier = breakup; //max value for sine function, 'breakup' modeling for trashed console tone //more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag bridgerectifier = sin(bridgerectifier)/hardness; //do the sine factor, scale back to proper amount if (inputSample > 0) inputSample = bridgerectifier+threshold; else inputSample = -(bridgerectifier+threshold); } //otherwise we leave it untouched by the overdrive stuff randy = ((rand()/(double)RAND_MAX)*0.057); inputSample = ((inputSample*(1-randy))+(lastSample*randy)) * outlevel; lastSample = inputSample; //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }