/* * File: CStrip.cpp * * Version: 1.0 * * Created: 1/27/13 * * Copyright: Copyright © 2013 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= CStrip.cpp =============================================================================*/ #include "CStrip.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(CStrip) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::CStrip //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CStrip::CStrip(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); SetParameter(kParam_Six, kDefaultValue_ParamSix ); SetParameter(kParam_Seven, kDefaultValue_ParamSeven ); SetParameter(kParam_Eight, kDefaultValue_ParamEight ); SetParameter(kParam_Nine, kDefaultValue_ParamNine ); SetParameter(kParam_Ten, kDefaultValue_ParamTen ); SetParameter(kParam_Eleven, kDefaultValue_ParamEleven ); SetParameter(kParam_Twelve, kDefaultValue_ParamTwelve ); //L #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult CStrip::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult CStrip::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterFourUnit; outParameterInfo.minValue = 1.0; outParameterInfo.maxValue = 16.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterFiveUnit; outParameterInfo.minValue = 1.0; outParameterInfo.maxValue = 16.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; case kParam_Six: AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterSixUnit; outParameterInfo.minValue = 30.0; outParameterInfo.maxValue = 1600.0; outParameterInfo.defaultValue = kDefaultValue_ParamSix; break; case kParam_Seven: AUBase::FillInParameterName (outParameterInfo, kParameterSevenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterSevenUnit; outParameterInfo.minValue = 30.0; outParameterInfo.maxValue = 1600.0; outParameterInfo.defaultValue = kDefaultValue_ParamSeven; break; case kParam_Eight: AUBase::FillInParameterName (outParameterInfo, kParameterEightName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamEight; break; case kParam_Nine: AUBase::FillInParameterName (outParameterInfo, kParameterNineName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamNine; break; case kParam_Ten: AUBase::FillInParameterName (outParameterInfo, kParameterTenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTen; break; case kParam_Eleven: AUBase::FillInParameterName (outParameterInfo, kParameterElevenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamEleven; break; case kParam_Twelve: AUBase::FillInParameterName (outParameterInfo, kParameterTwelveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -18.0; outParameterInfo.maxValue = 18.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwelve; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //on 4,5,6,7 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult CStrip::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult CStrip::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // CStrip::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult CStrip::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____CStripEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::CStripKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void CStrip::CStripKernel::Reset() { fpNShape = 0.0; lastSample = 0.0; last2Sample = 0.0; iirHighSampleA = 0.0; iirHighSampleB = 0.0; iirHighSampleC = 0.0; iirHighSampleD = 0.0; iirHighSampleE = 0.0; iirLowSampleA = 0.0; iirLowSampleB = 0.0; iirLowSampleC = 0.0; iirLowSampleD = 0.0; iirLowSampleE = 0.0; iirHighSample = 0.0; iirLowSample = 0.0; tripletA = 0.0; tripletB = 0.0; tripletC = 0.0; tripletFactor = 0.0; flip = false; flipthree = 0; lowpassSampleAA = 0.0; lowpassSampleAB = 0.0; lowpassSampleBA = 0.0; lowpassSampleBB = 0.0; lowpassSampleCA = 0.0; lowpassSampleCB = 0.0; lowpassSampleDA = 0.0; lowpassSampleDB = 0.0; lowpassSampleE = 0.0; lowpassSampleF = 0.0; lowpassSampleG = 0.0; highpassSampleAA = 0.0; highpassSampleAB = 0.0; highpassSampleBA = 0.0; highpassSampleBB = 0.0; highpassSampleCA = 0.0; highpassSampleCB = 0.0; highpassSampleDA = 0.0; highpassSampleDB = 0.0; highpassSampleE = 0.0; highpassSampleF = 0.0; //end EQ //begin Gate WasNegative = false; ZeroCross = 0; gateroller = 0.0; gate = 0.0; //end Gate //begin Timing register UInt32 fcount; for(fcount = 0; fcount < 4098; fcount++) {p[fcount] = 0.0;} count = 0; //end Timing //begin ButterComp controlApos = 1.0; controlAneg = 1.0; controlBpos = 1.0; controlBneg = 1.0; targetpos = 1.0; targetneg = 1.0; avgA = avgB = 0.0; nvgA = nvgB = 0.0; //end ButterComp } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // CStrip::CStripKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void CStrip::CStripKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 overallscale = 1.0; overallscale /= 44100.0; Float64 compscale = overallscale; overallscale = GetSampleRate(); compscale = compscale * overallscale; //compscale is the one that's 1 or something like 2.2 for 96K rates long double fpOld = 0.618033988749894848204586; //golden ratio! long double fpNew = 1.0 - fpOld; Float64 inputSample; Float64 highSample = 0.0; Float64 midSample = 0.0; Float64 bassSample = 0.0; Float64 densityA = GetParameter( kParam_One )/2.0; Float64 densityB = GetParameter( kParam_Two )/2.0; Float64 densityC = GetParameter( kParam_Three )/2.0; bool engageEQ = true; if ( (0.0 == densityA) && (0.0 == densityB) && (0.0 == densityC) ) engageEQ = false; densityA = pow(10.0,densityA/20.0)-1.0; densityB = pow(10.0,densityB/20.0)-1.0; densityC = pow(10.0,densityC/20.0)-1.0; //convert to 0 to X multiplier with 1.0 being O db //minus one gives nearly -1 to ? (should top out at 1) //calibrate so that X db roughly equals X db with maximum topping out at 1 internally Float64 tripletIntensity = -densityA; Float64 iirAmountC = (GetParameter( kParam_Four )*0.0188) + 0.7; if (iirAmountC > 1.0) iirAmountC = 1.0; bool engageLowpass = false; if (GetParameter( kParam_Four ) < 15.99) engageLowpass = true; Float64 iirAmountA = (GetParameter( kParam_Five )*1000)/overallscale; Float64 iirAmountB = (GetParameter( kParam_Six )*10)/overallscale; Float64 iirAmountD = (GetParameter( kParam_Seven )*1.0)/overallscale; bool engageHighpass = false; if (GetParameter( kParam_Seven ) > 30.01) engageHighpass = true; //bypass the highpass and lowpass if set to extremes Float64 bridgerectifier; Float64 outA = fabs(densityA); Float64 outB = fabs(densityB); Float64 outC = fabs(densityC); //end EQ //begin Gate Float64 onthreshold = (pow(GetParameter( kParam_Eight ),4)/3)+0.00018; Float64 offthreshold = onthreshold * 1.1; bool engageGate = false; if (onthreshold > 0.00018) engageGate = true; Float64 release = 0.028331119964586; Float64 absmax = 220.9; //speed to be compensated w.r.t sample rate //end Gate //begin Timing Float64 offset = pow(GetParameter( kParam_Eleven ),5) * 700; int near = (int)floor(fabs(offset)); Float64 farLevel = fabs(offset) - near; int far = near + 1; Float64 nearLevel = 1.0 - farLevel; bool engageTiming = false; if (offset > 0.0) engageTiming = true; //end Timing //begin ButterComp Float64 inputpos; Float64 inputneg; Float64 calcpos; Float64 calcneg; Float64 outputpos; Float64 outputneg; Float64 totalmultiplier; Float64 inputgain = (pow(GetParameter( kParam_Nine ),4)*35)+1.0; Float64 compoutgain = inputgain; compoutgain -= 1.0; compoutgain /= 1.2; compoutgain += 1.0; Float64 divisor = (0.008 * pow(GetParameter( kParam_Ten ),2))+0.0004; //originally 0.012 divisor /= compscale; Float64 remainder = divisor; divisor = 1.0 - divisor; bool engageComp = false; if (inputgain > 1.0) engageComp = true; //end ButterComp Float64 outputgain = pow(10.0,GetParameter( kParam_Twelve )/20.0); while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } last2Sample = lastSample; lastSample = inputSample; //begin Gate if (engageGate) { if (inputSample > 0) {if (WasNegative == true){ZeroCross = absmax * 0.3;} WasNegative = false;} else {ZeroCross += 1; WasNegative = true;} if (ZeroCross > absmax) {ZeroCross = absmax;} if (gate == 0.0) { //if gate is totally silent if (fabs(inputSample) > onthreshold) { if (gateroller == 0.0) gateroller = ZeroCross; else gateroller -= release; // trigger from total silence only- if we're active then signal must clear offthreshold } else gateroller -= release; } else { //gate is not silent but closing if (fabs(inputSample) > offthreshold) { if (gateroller < ZeroCross) gateroller = ZeroCross; else gateroller -= release; //always trigger if gate is over offthreshold, otherwise close anyway } else gateroller -= release; } if (gateroller < 0.0) {gateroller = 0.0;} if (gateroller < 1.0) { gate = gateroller; bridgerectifier = 1-cos(fabs(inputSample)); if (inputSample > 0) inputSample = (inputSample*gate)+(bridgerectifier*(1-gate)); else inputSample = (inputSample*gate)-(bridgerectifier*(1-gate)); if (gate == 0.0) inputSample = 0.0; } else {gate = 1.0;} } //end Gate, begin antialiasing flip = not flip; flipthree++; if (flipthree < 1 || flipthree > 3) flipthree = 1; //counters //begin highpass if (engageHighpass) { if (flip) { highpassSampleAA = (highpassSampleAA * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleAA; highpassSampleBA = (highpassSampleBA * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleBA; highpassSampleCA = (highpassSampleCA * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleCA; highpassSampleDA = (highpassSampleDA * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleDA; } else { highpassSampleAB = (highpassSampleAB * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleAB; highpassSampleBB = (highpassSampleBB * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleBB; highpassSampleCB = (highpassSampleCB * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleCB; highpassSampleDB = (highpassSampleDB * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleDB; } highpassSampleE = (highpassSampleE * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleE; highpassSampleF = (highpassSampleF * (1 - iirAmountD)) + (inputSample * iirAmountD); inputSample = inputSample - highpassSampleF; } //end highpass //begin compressor if (engageComp) { inputSample *= inputgain; inputpos = (inputSample * fpOld) + (avgA * fpNew) + 1.0; avgA = inputSample; if (inputpos < 0.0) inputpos = 0.0; outputpos = inputpos / 2.0; if (outputpos > 1.0) outputpos = 1.0; inputpos *= inputpos; targetpos *= divisor; targetpos += (inputpos * remainder); calcpos = pow((1.0/targetpos),2); inputneg = (-inputSample * fpOld) + (nvgA * fpNew) + 1.0; nvgA = -inputSample; if (inputneg < 0.0) inputneg = 0.0; outputneg = inputneg / 2.0; if (outputneg > 1.0) outputneg = 1.0; inputneg *= inputneg; targetneg *= divisor; targetneg += (inputneg * remainder); calcneg = pow((1.0/targetneg),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSample > 0) { //working on pos if (true == flip) { controlApos *= divisor; controlApos += (calcpos*remainder); } else { controlBpos *= divisor; controlBpos += (calcpos*remainder); } } else { //working on neg if (true == flip) { controlAneg *= divisor; controlAneg += (calcneg*remainder); } else { controlBneg *= divisor; controlBneg += (calcneg*remainder); } } //this causes each of the four to update only when active and in the correct 'flip' if (true == flip) {totalmultiplier = (controlApos * outputpos) + (controlAneg * outputneg);} else {totalmultiplier = (controlBpos * outputpos) + (controlBneg * outputneg);} //this combines the sides according to flip, blending relative to the input value inputSample *= totalmultiplier; inputSample /= compoutgain; } //end compressor //begin EQ if (engageEQ) { switch (flipthree) { case 1: tripletFactor = last2Sample - inputSample; tripletA += tripletFactor; tripletC -= tripletFactor; tripletFactor = tripletA * tripletIntensity; iirHighSampleC = (iirHighSampleC * (1 - iirAmountA)) + (inputSample * iirAmountA); highSample = inputSample - iirHighSampleC; iirLowSampleC = (iirLowSampleC * (1 - iirAmountB)) + (inputSample * iirAmountB); bassSample = iirLowSampleC; break; case 2: tripletFactor = last2Sample - inputSample; tripletB += tripletFactor; tripletA -= tripletFactor; tripletFactor = tripletB * tripletIntensity; iirHighSampleD = (iirHighSampleD * (1 - iirAmountA)) + (inputSample * iirAmountA); highSample = inputSample - iirHighSampleD; iirLowSampleD = (iirLowSampleD * (1 - iirAmountB)) + (inputSample * iirAmountB); bassSample = iirLowSampleD; break; case 3: tripletFactor = last2Sample - inputSample; tripletC += tripletFactor; tripletB -= tripletFactor; tripletFactor = tripletC * tripletIntensity; iirHighSampleE = (iirHighSampleE * (1 - iirAmountA)) + (inputSample * iirAmountA); highSample = inputSample - iirHighSampleE; iirLowSampleE = (iirLowSampleE * (1 - iirAmountB)) + (inputSample * iirAmountB); bassSample = iirLowSampleE; break; } tripletA /= 2.0; tripletB /= 2.0; tripletC /= 2.0; highSample = highSample + tripletFactor; if (flip) { iirHighSampleA = (iirHighSampleA * (1 - iirAmountA)) + (highSample * iirAmountA); highSample = highSample - iirHighSampleA; iirLowSampleA = (iirLowSampleA * (1 - iirAmountB)) + (bassSample * iirAmountB); bassSample = iirLowSampleA; } else { iirHighSampleB = (iirHighSampleB * (1 - iirAmountA)) + (highSample * iirAmountA); highSample = highSample - iirHighSampleB; iirLowSampleB = (iirLowSampleB * (1 - iirAmountB)) + (bassSample * iirAmountB); bassSample = iirLowSampleB; } iirHighSample = (iirHighSample * (1 - iirAmountA)) + (highSample * iirAmountA); highSample = highSample - iirHighSample; iirLowSample = (iirLowSample * (1 - iirAmountB)) + (bassSample * iirAmountB); bassSample = iirLowSample; midSample = (inputSample-bassSample)-highSample; //drive section highSample *= (densityA+1.0); bridgerectifier = fabs(highSample)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densityA > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (highSample > 0) highSample = (highSample*(1-outA))+(bridgerectifier*outA); else highSample = (highSample*(1-outA))-(bridgerectifier*outA); //blend according to densityA control midSample *= (densityB+1.0); bridgerectifier = fabs(midSample)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densityB > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (midSample > 0) midSample = (midSample*(1-outB))+(bridgerectifier*outB); else midSample = (midSample*(1-outB))-(bridgerectifier*outB); //blend according to densityB control bassSample *= (densityC+1.0); bridgerectifier = fabs(bassSample)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densityC > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (bassSample > 0) bassSample = (bassSample*(1-outC))+(bridgerectifier*outC); else bassSample = (bassSample*(1-outC))-(bridgerectifier*outC); //blend according to densityC control inputSample = midSample; inputSample += highSample; inputSample += bassSample; } //end EQ //begin Timing if (engageTiming = true) { if (count < 1 || count > 2048) {count = 2048;} p[count+2048] = p[count] = inputSample; inputSample = p[count+near]*nearLevel; inputSample += p[count+far]*farLevel; count -= 1; //consider adding third sample just to bring out superhighs subtly, like old interpolation hacks //or third and fifth samples, ditto } //end Timing //EQ lowpass is after all processing like the compressor that might produce hash if (engageLowpass) { if (flip) { lowpassSampleAA = (lowpassSampleAA * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleAA; lowpassSampleBA = (lowpassSampleBA * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleBA; lowpassSampleCA = (lowpassSampleCA * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleCA; lowpassSampleDA = (lowpassSampleDA * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleDA; lowpassSampleE = (lowpassSampleE * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleE; } else { lowpassSampleAB = (lowpassSampleAB * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleAB; lowpassSampleBB = (lowpassSampleBB * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleBB; lowpassSampleCB = (lowpassSampleCB * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleCB; lowpassSampleDB = (lowpassSampleDB * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleDB; lowpassSampleF = (lowpassSampleF * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = lowpassSampleF; } lowpassSampleG = (lowpassSampleG * (1 - iirAmountC)) + (inputSample * iirAmountC); inputSample = (lowpassSampleG * (1 - iirAmountC)) + (inputSample * iirAmountC); } //built in output trim and dry/wet if desired if (outputgain != 1.0) inputSample *= outputgain; //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }