/* * File: BrassRider.cpp * * Version: 1.0 * * Created: 5/15/10 * * Copyright: Copyright © 2010 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= BrassRider.h =============================================================================*/ #include "BrassRider.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(BrassRider) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::BrassRider //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BrassRider::BrassRider(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BrassRider::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BrassRider::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BrassRider::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // state that plugin supports only stereo-in/stereo-out processing UInt32 BrassRider::SupportedNumChannels(const AUChannelInfo ** outInfo) { if (outInfo != NULL) { static AUChannelInfo info; info.inChannels = 2; info.outChannels = 2; *outInfo = &info; } return 1; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BrassRider::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BrassRider::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____BrassRiderEffectKernel //----------------------------------------------------------------------------------------- // this is called the reset the DSP state (clear buffers, reset counters, etc.) ComponentResult BrassRider::Reset(AudioUnitScope inScope, AudioUnitElement inElement) { for(int count = 0; count < 80001; count++) {d[count] = 0.0; e[count] = 0.0;} control = 0.0; clamp = 0.0; highIIRL = 0.0; slewIIRL = 0.0; highIIR2L = 0.0; slewIIR2L = 0.0; lastSampleL = 0.0; lastSlewL = 0.0; highIIRR = 0.0; slewIIRR = 0.0; highIIR2R = 0.0; slewIIR2R = 0.0; lastSampleR = 0.0; lastSlewR = 0.0; gcount = 0; fpd = 17; return noErr; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BrassRider::ProcessBufferLists //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OSStatus BrassRider::ProcessBufferLists(AudioUnitRenderActionFlags & ioActionFlags, const AudioBufferList & inBuffer, AudioBufferList & outBuffer, UInt32 inFramesToProcess) { Float32 * inputL = (Float32*)(inBuffer.mBuffers[0].mData); Float32 * inputR = (Float32*)(inBuffer.mBuffers[1].mData); Float32 * outputL = (Float32*)(outBuffer.mBuffers[0].mData); Float32 * outputR = (Float32*)(outBuffer.mBuffers[1].mData); UInt32 nSampleFrames = inFramesToProcess; Float64 limitOut = GetParameter( kParam_One )*16; int offsetA = 13500; int offsetB = 16700; Float64 wet = GetParameter( kParam_Two ); while (nSampleFrames-- > 0) { long double inputSampleL = *inputL; long double inputSampleR = *inputR; //assign working variables if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; inputSampleL *= limitOut; highIIRL = (highIIRL*0.5); highIIRL += (inputSampleL*0.5); inputSampleL -= highIIRL; highIIR2L = (highIIR2L*0.5); highIIR2L += (inputSampleL*0.5); inputSampleL -= highIIR2L; long double slewSampleL = fabs(inputSampleL - lastSampleL); lastSampleL = inputSampleL; slewSampleL /= fabs(inputSampleL * lastSampleL)+0.2; slewIIRL = (slewIIRL*0.5); slewIIRL += (slewSampleL*0.5); slewSampleL = fabs(slewSampleL - slewIIRL); slewIIR2L = (slewIIR2L*0.5); slewIIR2L += (slewSampleL*0.5); slewSampleL = fabs(slewSampleL - slewIIR2L); long double bridgerectifier = slewSampleL; //there's the left channel, now to feed it to overall clamp if (bridgerectifier > 3.1415) bridgerectifier = 0.0; bridgerectifier = sin(bridgerectifier); if (gcount < 0 || gcount > 40000) {gcount = 40000;} d[gcount+40000] = d[gcount] = bridgerectifier; control += (d[gcount] / (offsetA+1)); control -= (d[gcount+offsetA] / offsetA); Float64 ramp = (control*control) * 16.0; e[gcount+40000] = e[gcount] = ramp; clamp += (e[gcount] / (offsetB+1)); clamp -= (e[gcount+offsetB] / offsetB); if (clamp > wet*8) clamp = wet*8; gcount--; inputSampleR *= limitOut; highIIRR = (highIIRR*0.5); highIIRR += (inputSampleR*0.5); inputSampleR -= highIIRR; highIIR2R = (highIIR2R*0.5); highIIR2R += (inputSampleR*0.5); inputSampleR -= highIIR2R; long double slewSampleR = fabs(inputSampleR - lastSampleR); lastSampleR = inputSampleR; slewSampleR /= fabs(inputSampleR * lastSampleR)+0.2; slewIIRR = (slewIIRR*0.5); slewIIRR += (slewSampleR*0.5); slewSampleR = fabs(slewSampleR - slewIIRR); slewIIR2R = (slewIIR2R*0.5); slewIIR2R += (slewSampleR*0.5); slewSampleR = fabs(slewSampleR - slewIIR2R); bridgerectifier = slewSampleR; //there's the right channel, now to feed it to overall clamp if (bridgerectifier > 3.1415) bridgerectifier = 0.0; bridgerectifier = sin(bridgerectifier); if (gcount < 0 || gcount > 40000) {gcount = 40000;} d[gcount+40000] = d[gcount] = bridgerectifier; control += (d[gcount] / (offsetA+1)); control -= (d[gcount+offsetA] / offsetA); ramp = (control*control) * 16.0; e[gcount+40000] = e[gcount] = ramp; clamp += (e[gcount] / (offsetB+1)); clamp -= (e[gcount+offsetB] / offsetB); if (clamp > wet*8) clamp = wet*8; gcount--; inputSampleL = (drySampleL * (1.0-wet)) + (drySampleL * clamp * wet * 16.0); inputSampleR = (drySampleR * (1.0-wet)) + (drySampleR * clamp * wet * 16.0); //begin 32 bit stereo floating point dither int expon; frexpf((float)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); frexpf((float)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); //end 32 bit stereo floating point dither *outputL = inputSampleL; *outputR = inputSampleR; inputL += 1; inputR += 1; outputL += 1; outputR += 1; } return noErr; }