/* * File: BlockParty.cpp * * Version: 1.0 * * Created: 2/16/19 * * Copyright: Copyright © 2019 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= BlockParty.cpp =============================================================================*/ #include "BlockParty.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(BlockParty) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::BlockParty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BlockParty::BlockParty(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BlockParty::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BlockParty::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BlockParty::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BlockParty::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // BlockParty::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BlockParty::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____BlockPartyEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::BlockPartyKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void BlockParty::BlockPartyKernel::Reset() { muSpeedA = 10000; muSpeedB = 10000; muSpeedC = 10000; muSpeedD = 10000; muSpeedE = 10000; muCoefficientA = 1; muCoefficientB = 1; muCoefficientC = 1; muCoefficientD = 1; muCoefficientE = 1; lastCoefficientA = 1; lastCoefficientB = 1; lastCoefficientC = 1; lastCoefficientD = 1; mergedCoefficients = 1; threshold = 1.0; thresholdB = 1.0; muVary = 1; count = 1; fpFlip = true; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BlockParty::BlockPartyKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void BlockParty::BlockPartyKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 targetthreshold = 1.01 - (1.0-pow(1.0-(GetParameter( kParam_One )*0.5),4)); Float64 wet = GetParameter( kParam_Two ); Float64 voicing = 0.618033988749894848204586; if (overallscale > 0.0) voicing /= overallscale; //translate to desired sample rate, 44.1K is the base if (voicing < 0.0) voicing = 0.0; if (voicing > 1.0) voicing = 1.0; //some insanity checking while (nSampleFrames-- > 0) { long double inputSample = *sourceP; static int noisesource = 0; int residue; double applyresidue; noisesource = noisesource % 1700021; noisesource++; residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample += applyresidue; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { inputSample -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySample = inputSample; Float64 muMakeupGain = 1.0 / threshold; Float64 outMakeupGain = sqrt(muMakeupGain); muMakeupGain += outMakeupGain; muMakeupGain *= 0.5; //gain settings around threshold Float64 release = mergedCoefficients * 32768.0; release /= overallscale; Float64 fastest = sqrt(release); //speed settings around release Float64 lastCorrection = mergedCoefficients; // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~ if (muMakeupGain != 1.0) inputSample = inputSample * muMakeupGain; if (count < 1 || count > 3) count = 1; switch (count) { case 1: if (fabs(inputSample) > threshold) { if (inputSample > 0.0) { inputSample = (inputSample * voicing) + (targetthreshold * (1.0-voicing)); threshold = fabs(inputSample); } else { inputSample = (inputSample * voicing) - (targetthreshold * (1.0-voicing)); threshold = fabs(inputSample); } muVary = targetthreshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedA)); muCoefficientA = muCoefficientA * (muAttack-1.0); if (muVary < threshold) { muCoefficientA = muCoefficientA + targetthreshold; } else { muCoefficientA = muCoefficientA + muVary; } muCoefficientA = muCoefficientA / muAttack; } else { threshold = targetthreshold; muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0); muCoefficientA = muCoefficientA + 1.0; muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA); } muNewSpeed = muSpeedA * (muSpeedA-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedA = muNewSpeed / muSpeedA; lastCoefficientA = pow(muCoefficientA,2); mergedCoefficients = lastCoefficientB; mergedCoefficients += lastCoefficientA; lastCoefficientA *= (1.0-lastCorrection); lastCoefficientA += (muCoefficientA * lastCorrection); lastCoefficientB = lastCoefficientA; break; case 2: if (fabs(inputSample) > threshold) { if (inputSample > 0.0) { inputSample = (inputSample * voicing) + (targetthreshold * (1.0-voicing)); threshold = fabs(inputSample); } else { inputSample = (inputSample * voicing) - (targetthreshold * (1.0-voicing)); threshold = fabs(inputSample); } muVary = targetthreshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedB)); muCoefficientB = muCoefficientB * (muAttack-1); if (muVary < threshold) { muCoefficientB = muCoefficientB + targetthreshold; } else { muCoefficientB = muCoefficientB + muVary; } muCoefficientB = muCoefficientB / muAttack; } else { threshold = targetthreshold; muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0); muCoefficientB = muCoefficientB + 1.0; muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB); } muNewSpeed = muSpeedB * (muSpeedB-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedB = muNewSpeed / muSpeedB; lastCoefficientA = pow(muCoefficientB,2); mergedCoefficients = lastCoefficientB; mergedCoefficients += lastCoefficientA; lastCoefficientA *= (1.0-lastCorrection); lastCoefficientA += (muCoefficientB * lastCorrection); lastCoefficientB = lastCoefficientA; break; case 3: if (fabs(inputSample) > threshold) { if (inputSample > 0.0) { inputSample = (inputSample * voicing) + (targetthreshold * (1.0-voicing)); threshold = fabs(inputSample); } else { inputSample = (inputSample * voicing) - (targetthreshold * (1.0-voicing)); threshold = fabs(inputSample); } muVary = targetthreshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedC)); muCoefficientC = muCoefficientC * (muAttack-1); if (muVary < threshold) { muCoefficientC = muCoefficientC + targetthreshold; } else { muCoefficientC = muCoefficientC + muVary; } muCoefficientC = muCoefficientC / muAttack; } else { threshold = targetthreshold; muCoefficientC = muCoefficientC * ((muSpeedC * muSpeedC)-1.0); muCoefficientC = muCoefficientC + 1.0; muCoefficientC = muCoefficientC / (muSpeedC * muSpeedC); } muNewSpeed = muSpeedC * (muSpeedC-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedC = muNewSpeed / muSpeedC; lastCoefficientA = pow(muCoefficientC,2); mergedCoefficients = lastCoefficientB; mergedCoefficients += lastCoefficientA; lastCoefficientA *= (1.0-lastCorrection); lastCoefficientA += (muCoefficientC * lastCorrection); lastCoefficientB = lastCoefficientA; break; } count++; //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~ //applied gain correction to control output level- tends to constrain sound rather than inflate it if (fpFlip) { if (fabs(inputSample) > thresholdB) { if (inputSample > 0.0) { inputSample = (inputSample * voicing) + (targetthreshold * (1.0-voicing)); thresholdB = fabs(inputSample); } else { inputSample = (inputSample * voicing) - (targetthreshold * (1.0-voicing)); thresholdB = fabs(inputSample); } muVary = targetthreshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedD)); muCoefficientD = muCoefficientD * (muAttack-1.0); if (muVary < thresholdB) { muCoefficientD = muCoefficientD + targetthreshold; } else { muCoefficientD = muCoefficientD + muVary; } muCoefficientD = muCoefficientD / muAttack; } else { thresholdB = targetthreshold; muCoefficientD = muCoefficientD * ((muSpeedD * muSpeedD)-1.0); muCoefficientD = muCoefficientD + 1.0; muCoefficientD = muCoefficientD / (muSpeedD * muSpeedD); } muNewSpeed = muSpeedD * (muSpeedD-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedD = muNewSpeed / muSpeedD; lastCoefficientC = pow(muCoefficientE,2); mergedCoefficients += lastCoefficientD; mergedCoefficients += lastCoefficientC; lastCoefficientC *= (1.0-lastCorrection); lastCoefficientC += (muCoefficientD * lastCorrection); lastCoefficientD = lastCoefficientC; } else { if (fabs(inputSample) > thresholdB) { if (inputSample > 0.0) { inputSample = (inputSample * voicing) + (targetthreshold * (1.0-voicing)); thresholdB = fabs(inputSample); } else { inputSample = (inputSample * voicing) - (targetthreshold * (1.0-voicing)); thresholdB = fabs(inputSample); } muVary = targetthreshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedE)); muCoefficientE = muCoefficientE * (muAttack-1.0); if (muVary < thresholdB) { muCoefficientE = muCoefficientE + targetthreshold; } else { muCoefficientE = muCoefficientE + muVary; } muCoefficientE = muCoefficientE / muAttack; } else { thresholdB = targetthreshold; muCoefficientE = muCoefficientE * ((muSpeedE * muSpeedE)-1.0); muCoefficientE = muCoefficientE + 1.0; muCoefficientE = muCoefficientE / (muSpeedE * muSpeedE); } muNewSpeed = muSpeedE * (muSpeedE-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedE = muNewSpeed / muSpeedE; lastCoefficientC = pow(muCoefficientE,2); mergedCoefficients += lastCoefficientD; mergedCoefficients += lastCoefficientC; lastCoefficientC *= (1.0-lastCorrection); lastCoefficientC += (muCoefficientE * lastCorrection); lastCoefficientD = lastCoefficientC; } mergedCoefficients *= 0.25; inputSample *= mergedCoefficients; if (outMakeupGain != 1.0) inputSample = inputSample * outMakeupGain; fpFlip = !fpFlip; if (wet < 1.0) { inputSample = (inputSample * wet) + (drySample * (1.0-wet)); } if (inputSample > 0.999) inputSample = 0.999; if (inputSample < -0.999) inputSample = -0.999; //iron bar clip comes after the dry/wet: alternate way to clean things up //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }