/* * File: Biquad2.cpp * * Version: 1.0 * * Created: 8/29/19 * * Copyright: Copyright © 2019 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Biquad2.cpp =============================================================================*/ #include "Biquad2.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Biquad2) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::Biquad2 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Biquad2::Biquad2(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad2::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad2::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Indexed; outParameterInfo.minValue = 1; outParameterInfo.maxValue = 4; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.minValue = 0.003; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.minValue = 1.0; outParameterInfo.maxValue = 50.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad2::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad2::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Biquad2::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad2::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____Biquad2EffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::Biquad2Kernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Biquad2::Biquad2Kernel::Reset() { for (int x = 0; x < 11; x++) {biquad[x] = 0.0; b[x] = 0.0; f[x] = 0.0;} frequencychase = 0.0015; resonancechase = 0.001; outputchase = 1.0; wetchase = 1.0; frequencysetting = -1.0; resonancesetting = -1.0; outputsetting = -1.0; wetsetting = -2.0; //-1.0 is a possible setting here and this forces an update on chasespeed chasespeed = 500.0; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad2::Biquad2Kernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Biquad2::Biquad2Kernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); int type = GetParameter( kParam_One); Float64 average = GetParameter( kParam_Two ); Float64 frequencytarget = average*0.39; //biquad[0], goes to 1.0 frequencytarget /= overallscale; if (frequencytarget < 0.0015/overallscale) frequencytarget = 0.0015/overallscale; Float64 resonancetarget = GetParameter( kParam_Three ); //biquad[1], goes to 50.0 if (resonancetarget < 1.0) resonancetarget = 1.0; Float64 outputtarget = GetParameter( kParam_Four ); //scaled to res if (type < 3) outputtarget /= sqrt(resonancetarget); Float64 wettarget = GetParameter( kParam_Five ); //wet, goes -1.0 to 1.0 //biquad contains these values: //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist //[1] is resonance, 0.7071 is Butterworth. Also can't be zero //[2] is a0 but you need distinct ones for additional biquad instances so it's here //[3] is a1 but you need distinct ones for additional biquad instances so it's here //[4] is a2 but you need distinct ones for additional biquad instances so it's here //[5] is b1 but you need distinct ones for additional biquad instances so it's here //[6] is b2 but you need distinct ones for additional biquad instances so it's here //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample) //[8] is a stored delayed sample (you have to include the coefficient making code if you do that) //[9] is a stored delayed sample (you have to include the coefficient making code if you do that) //[10] is a stored delayed sample (you have to include the coefficient making code if you do that) Float64 K = tan(M_PI * biquad[0]); Float64 norm = 1.0 / (1.0 + K / biquad[1] + K * K); //finished setting up biquad average = (1.0-average)*10.0; //max taps is 10, and low settings use more if (type == 1 || type == 3) average = 1.0; Float64 gain = average; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (average < 1.0) average = 1.0; f[0] /= average; f[1] /= average; f[2] /= average; f[3] /= average; f[4] /= average; f[5] /= average; f[6] /= average; f[7] /= average; f[8] /= average; f[9] /= average; //and now it's neatly scaled, too //finished setting up average while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; long double drySample = *sourceP; Float64 chasespeed = 50000; if (frequencychase < frequencytarget) chasespeed = 500000; chasespeed /= resonancechase; chasespeed *= overallscale; frequencychase = (((frequencychase*chasespeed)+frequencytarget)/(chasespeed+1.0)); Float64 fasterchase = 1000 * overallscale; resonancechase = (((resonancechase*fasterchase)+resonancetarget)/(fasterchase+1.0)); outputchase = (((outputchase*fasterchase)+outputtarget)/(fasterchase+1.0)); wetchase = (((wetchase*fasterchase)+wettarget)/(fasterchase+1.0)); if (biquad[0] != frequencychase) {biquad[0] = frequencychase; K = tan(M_PI * biquad[0]);} if (biquad[1] != resonancechase) {biquad[1] = resonancechase; norm = 1.0 / (1.0 + K / biquad[1] + K * K);} if (type == 1) { //lowpass biquad[2] = K * K * norm; biquad[3] = 2.0 * biquad[2]; biquad[4] = biquad[2]; biquad[5] = 2.0 * (K * K - 1.0) * norm; } if (type == 2) { //highpass biquad[2] = norm; biquad[3] = -2.0 * biquad[2]; biquad[4] = biquad[2]; biquad[5] = 2.0 * (K * K - 1.0) * norm; } if (type == 3) { //bandpass biquad[2] = K / biquad[1] * norm; biquad[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply biquad[4] = -biquad[2]; biquad[5] = 2.0 * (K * K - 1.0) * norm; } if (type == 4) { //notch biquad[2] = (1.0 + K * K) * norm; biquad[3] = 2.0 * (K * K - 1) * norm; biquad[4] = biquad[2]; biquad[5] = biquad[3]; } biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; inputSample = sin(inputSample); //encode Console5: good cleanness long double outSample = biquad[2]*inputSample+biquad[3]*biquad[7]+biquad[4]*biquad[8]-biquad[5]*biquad[9]-biquad[6]*biquad[10]; biquad[8] = biquad[7]; biquad[7] = inputSample; inputSample = outSample; biquad[10] = biquad[9]; biquad[9] = inputSample; //DF1 if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; b[9] = b[8]; b[8] = b[7]; b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = inputSample; inputSample *= f[0]; inputSample += (b[1] * f[1]); inputSample += (b[2] * f[2]); inputSample += (b[3] * f[3]); inputSample += (b[4] * f[4]); inputSample += (b[5] * f[5]); inputSample += (b[6] * f[6]); inputSample += (b[7] * f[7]); inputSample += (b[8] * f[8]); inputSample += (b[9] * f[9]); //intense averaging on deeper cutoffs if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSample = asin(inputSample); //amplitude aspect if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; //and then Console5 will spit out overs if you let it if (outputchase < 1.0) { inputSample *= outputchase; } if (wetchase < 1.0) { inputSample = (inputSample*wetchase) + (drySample*(1.0-fabs(wetchase))); //inv/dry/wet lets us turn LP into HP and band into notch } //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }