/* * File: Biquad.cpp * * Version: 1.0 * * Created: 6/28/19 * * Copyright: Copyright © 2019 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Biquad.cpp =============================================================================*/ #include "Biquad.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Biquad) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::Biquad //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Biquad::Biquad(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Indexed; outParameterInfo.minValue = 1.0; outParameterInfo.maxValue = 4.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.minValue = 0.0001; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.minValue = 0.01; outParameterInfo.maxValue = 30.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Biquad::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Biquad::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____BiquadEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::BiquadKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Biquad::BiquadKernel::Reset() { for (int x = 0; x < 9; x++) {biquad[x] = 0.0;} fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Biquad::BiquadKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Biquad::BiquadKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); int type = GetParameter( kParam_One); biquad[0] = GetParameter( kParam_Two )*0.499; if (biquad[0] < 0.0001) biquad[0] = 0.0001; biquad[1] = GetParameter( kParam_Three ); if (biquad[1] < 0.0001) biquad[1] = 0.0001; Float64 wet = GetParameter( kParam_Four ); //biquad contains these values: //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist //[1] is resonance, 0.7071 is Butterworth. Also can't be zero //[2] is a0 but you need distinct ones for additional biquad instances so it's here //[3] is a1 but you need distinct ones for additional biquad instances so it's here //[4] is a2 but you need distinct ones for additional biquad instances so it's here //[5] is b1 but you need distinct ones for additional biquad instances so it's here //[6] is b2 but you need distinct ones for additional biquad instances so it's here //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample) //[8] is a stored delayed sample (you have to include the coefficient making code if you do that) //to build a dedicated filter, rename 'biquad' to whatever the new filter is, then //put this code either within the sample buffer (for smoothly modulating freq or res) //or in this 'read the controls' area (for letting you change freq and res with controls) //or in 'reset' if the freq and res are absolutely fixed (use GetSampleRate to define freq) if (type == 1) { //lowpass double K = tan(M_PI * biquad[0]); double norm = 1.0 / (1.0 + K / biquad[1] + K * K); biquad[2] = K * K * norm; biquad[3] = 2.0 * biquad[2]; biquad[4] = biquad[2]; biquad[5] = 2.0 * (K * K - 1.0) * norm; biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; } if (type == 2) { //highpass double K = tan(M_PI * biquad[0]); double norm = 1.0 / (1.0 + K / biquad[1] + K * K); biquad[2] = norm; biquad[3] = -2.0 * biquad[2]; biquad[4] = biquad[2]; biquad[5] = 2.0 * (K * K - 1.0) * norm; biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; } if (type == 3) { //bandpass double K = tan(M_PI * biquad[0]); double norm = 1.0 / (1.0 + K / biquad[1] + K * K); biquad[2] = K / biquad[1] * norm; biquad[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply biquad[4] = -biquad[2]; biquad[5] = 2.0 * (K * K - 1.0) * norm; biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; } if (type == 4) { //notch double K = tan(M_PI * biquad[0]); double norm = 1.0 / (1.0 + K / biquad[1] + K * K); biquad[2] = (1.0 + K * K) * norm; biquad[3] = 2.0 * (K * K - 1) * norm; biquad[4] = biquad[2]; biquad[5] = biquad[3]; biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; } while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; long double drySample = *sourceP; inputSample = sin(inputSample); //encode Console5: good cleanness long double tempSample = (inputSample * biquad[2]) + biquad[7]; biquad[7] = (inputSample * biquad[3]) - (tempSample * biquad[5]) + biquad[8]; biquad[8] = (inputSample * biquad[4]) - (tempSample * biquad[6]); inputSample = tempSample; if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSample = asin(inputSample); //amplitude aspect if (wet < 1.0) { inputSample = (inputSample*wet) + (drySample*(1.0-fabs(wet))); //inv/dry/wet lets us turn LP into HP and band into notch } //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } } /* if (type == 5) { //peak, but I prefer to assemble this from bandpass/notch double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist double biquad[1] = reso; // 0.000001 to >10 is resonance, 0.7071 is Butterworth double peakGain = boost; //negative or positive gain, in dB if (peakGain >= 0) { // boost double V = pow(10, fabs(peakGain) / 20.0); double K = tan(M_PI * biquad[0]); double norm = 1 / (1 + 1/biquad[1] * K + K * K); biquad[2] = (1 + V/biquad[1] * K + K * K) * norm; biquad[3] = 2 * (K * K - 1) * norm; biquad[4] = (1 - V/biquad[1] * K + K * K) * norm; biquad[5] = biquad[3]; biquad[6] = (1 - 1/biquad[1] * K + K * K) * norm; } else {// cut double V = pow(10, fabs(peakGain) / 20.0); double K = tan(M_PI * biquad[0]); double norm = 1 / (1 + V/biquad[1] * K + K * K); biquad[2] = (1 + 1/biquad[1] * K + K * K) * norm; biquad[3] = 2 * (K * K - 1) * norm; biquad[4] = (1 - 1/biquad[1] * K + K * K) * norm; biquad[5] = biquad[3]; biquad[6] = (1 - V/biquad[1] * K + K * K) * norm; } } if (type == 6) { //lowshelf, but I prefer to assemble this from raw lowpass/highpass double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist double peakGain = 0.0; //negative or positive gain, in dB if (peakGain >= 0) { // boost double V = pow(10, fabs(peakGain) / 20.0); double K = tan(M_PI * biquad[0]); double norm = 1 / (1 + sqrt(2) * K + K * K); biquad[2] = (1 + sqrt(2*V) * K + V * K * K) * norm; biquad[3] = 2 * (V * K * K - 1) * norm; biquad[4] = (1 - sqrt(2*V) * K + V * K * K) * norm; biquad[5] = 2 * (K * K - 1) * norm; biquad[6] = (1 - sqrt(2) * K + K * K) * norm; } else { // cut double V = pow(10, fabs(peakGain) / 20.0); double K = tan(M_PI * biquad[0]); double norm = 1 / (1 + sqrt(2*V) * K + V * K * K); biquad[2] = (1 + sqrt(2) * K + K * K) * norm; biquad[3] = 2 * (K * K - 1) * norm; biquad[4] = (1 - sqrt(2) * K + K * K) * norm; biquad[5] = 2 * (V * K * K - 1) * norm; biquad[6] = (1 - sqrt(2*V) * K + V * K * K) * norm; } } if (type == 7) { //highshelf, but I prefer to assemble this from raw lowpass/highpass double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist double peakGain = 0.0; //negative or positive gain, in dB if (peakGain >= 0) { // boost double V = pow(10, fabs(peakGain) / 20.0); double K = tan(M_PI * biquad[0]); double norm = 1 / (1 + sqrt(2) * K + K * K); biquad[2] = (V + sqrt(2*V) * K + K * K) * norm; biquad[3] = 2 * (K * K - V) * norm; biquad[4] = (V - sqrt(2*V) * K + K * K) * norm; biquad[5] = 2 * (K * K - 1) * norm; biquad[6] = (1 - sqrt(2) * K + K * K) * norm; } else { // cut double V = pow(10, fabs(peakGain) / 20.0); double K = tan(M_PI * biquad[0]); double norm = 1 / (V + sqrt(2*V) * K + K * K); biquad[2] = (1 + sqrt(2) * K + K * K) * norm; biquad[3] = 2 * (K * K - 1) * norm; biquad[4] = (1 - sqrt(2) * K + K * K) * norm; biquad[5] = 2 * (K * K - V) * norm; biquad[6] = (V - sqrt(2*V) * K + K * K) * norm; } } */