/* * File: Baxandall.cpp * * Version: 1.0 * * Created: 12/22/19 * * Copyright: Copyright © 2019 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Baxandall.cpp =============================================================================*/ #include "Baxandall.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Baxandall) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::Baxandall //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Baxandall::Baxandall(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Baxandall::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Baxandall::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -15.0; outParameterInfo.maxValue = 15.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -15.0; outParameterInfo.maxValue = 15.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -15.0; outParameterInfo.maxValue = 15.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Baxandall::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Baxandall::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Baxandall::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Baxandall::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____BaxandallEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::BaxandallKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Baxandall::BaxandallKernel::Reset() { for (int x = 0; x < 9; x++) { trebleA[x] = 0.0; trebleB[x] = 0.0; bassA[x] = 0.0; bassB[x] = 0.0; } flip = false; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Baxandall::BaxandallKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Baxandall::BaxandallKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 trebleGain = pow(10.0,GetParameter( kParam_One )/20.0); Float64 trebleFreq = (4410.0*trebleGain)/GetSampleRate(); if (trebleFreq > 0.45) trebleFreq = 0.45; trebleA[0] = trebleB[0] = trebleFreq; Float64 bassGain = pow(10.0,GetParameter( kParam_Two )/20.0); Float64 bassFreq = pow(10.0,-GetParameter( kParam_Two )/20.0); bassFreq = (8820.0*bassFreq)/GetSampleRate(); if (bassFreq > 0.45) bassFreq = 0.45; bassA[0] = bassB[0] = bassFreq; trebleA[1] = trebleB[1] = 0.4; bassA[1] = bassB[1] = 0.2; Float64 output = pow(10.0,GetParameter( kParam_Three )/20.0); double K = tan(M_PI * trebleA[0]); double norm = 1.0 / (1.0 + K / trebleA[1] + K * K); trebleB[2] = trebleA[2] = K * K * norm; trebleB[3] = trebleA[3] = 2.0 * trebleA[2]; trebleB[4] = trebleA[4] = trebleA[2]; trebleB[5] = trebleA[5] = 2.0 * (K * K - 1.0) * norm; trebleB[6] = trebleA[6] = (1.0 - K / trebleA[1] + K * K) * norm; K = tan(M_PI * bassA[0]); norm = 1.0 / (1.0 + K / bassA[1] + K * K); bassB[2] = bassA[2] = K * K * norm; bassB[3] = bassA[3] = 2.0 * bassA[2]; bassB[4] = bassA[4] = bassA[2]; bassB[5] = bassA[5] = 2.0 * (K * K - 1.0) * norm; bassB[6] = bassA[6] = (1.0 - K / bassA[1] + K * K) * norm; while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; if (output != 1.0) { inputSample *= output; }//gain trim in front of plugin, in case Console stage clips inputSample = sin(inputSample); //encode Console5: good cleanness long double trebleSample; long double bassSample; if (flip) { trebleSample = (inputSample * trebleA[2]) + trebleA[7]; trebleA[7] = (inputSample * trebleA[3]) - (trebleSample * trebleA[5]) + trebleA[8]; trebleA[8] = (inputSample * trebleA[4]) - (trebleSample * trebleA[6]); trebleSample = inputSample - trebleSample; bassSample = (inputSample * bassA[2]) + bassA[7]; bassA[7] = (inputSample * bassA[3]) - (bassSample * bassA[5]) + bassA[8]; bassA[8] = (inputSample * bassA[4]) - (bassSample * bassA[6]); } else { trebleSample = (inputSample * trebleB[2]) + trebleB[7]; trebleB[7] = (inputSample * trebleB[3]) - (trebleSample * trebleB[5]) + trebleB[8]; trebleB[8] = (inputSample * trebleB[4]) - (trebleSample * trebleB[6]); trebleSample = inputSample - trebleSample; bassSample = (inputSample * bassB[2]) + bassB[7]; bassB[7] = (inputSample * bassB[3]) - (bassSample * bassB[5]) + bassB[8]; bassB[8] = (inputSample * bassB[4]) - (bassSample * bassB[6]); } flip = !flip; trebleSample *= trebleGain; bassSample *= bassGain; inputSample = bassSample + trebleSample; //interleaved biquad if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSample = asin(inputSample); //amplitude aspect //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }