/* * File: BassKit.cpp * * Version: 1.0 * * Created: 10/14/18 * * Copyright: Copyright © 2018 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= BassKit.cpp =============================================================================*/ #include "BassKit.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(BassKit) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::BassKit //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BassKit::BassKit(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BassKit::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BassKit::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BassKit::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // state that plugin supports only stereo-in/stereo-out processing UInt32 BassKit::SupportedNumChannels(const AUChannelInfo ** outInfo) { if (outInfo != NULL) { static AUChannelInfo info; info.inChannels = 2; info.outChannels = 2; *outInfo = &info; } return 1; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BassKit::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // BassKit::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BassKit::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____BassKitEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::BassKitKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult BassKit::Reset(AudioUnitScope inScope, AudioUnitElement inElement) { WasNegative = false; SubOctave = false; flip = false; bflip = 0; iirDriveSampleA = 0.0; iirDriveSampleB = 0.0; iirDriveSampleC = 0.0; iirDriveSampleD = 0.0; iirDriveSampleE = 0.0; iirDriveSampleF = 0.0; iirHeadBumpA = 0.0; iirHeadBumpB = 0.0; iirHeadBumpC = 0.0; iirSubBumpA = 0.0; iirSubBumpB = 0.0; iirSubBumpC = 0.0; lastHeadBump = 0.0; lastSubBump = 0.0; iirSampleA = 0.0; iirSampleB = 0.0; iirSampleC = 0.0; iirSampleD = 0.0; iirSampleE = 0.0; iirSampleF = 0.0; iirSampleG = 0.0; iirSampleH = 0.0; iirSampleI = 0.0; iirSampleJ = 0.0; iirSampleK = 0.0; iirSampleL = 0.0; iirSampleM = 0.0; iirSampleN = 0.0; iirSampleO = 0.0; iirSampleP = 0.0; iirSampleQ = 0.0; iirSampleR = 0.0; iirSampleS = 0.0; iirSampleT = 0.0; iirSampleU = 0.0; iirSampleV = 0.0; iirSampleW = 0.0; iirSampleX = 0.0; iirSampleY = 0.0; iirSampleZ = 0.0; oscGate = 1.0; fpNShapeL = 0.0; fpNShapeR = 0.0; return noErr; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // BassKit::ProcessBufferLists //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OSStatus BassKit::ProcessBufferLists(AudioUnitRenderActionFlags & ioActionFlags, const AudioBufferList & inBuffer, AudioBufferList & outBuffer, UInt32 inFramesToProcess) { Float32 * inputL = (Float32*)(inBuffer.mBuffers[0].mData); Float32 * inputR = (Float32*)(inBuffer.mBuffers[1].mData); Float32 * outputL = (Float32*)(outBuffer.mBuffers[0].mData); Float32 * outputR = (Float32*)(outBuffer.mBuffers[1].mData); UInt32 nSampleFrames = inFramesToProcess; long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 ataLowpass; Float64 randy; Float64 invrandy; Float64 HeadBump = 0.0; Float64 BassGain = GetParameter( kParam_One ) * 0.1; Float64 HeadBumpFreq = ((GetParameter( kParam_Two )*0.1)+0.02)/overallscale; Float64 iirAmount = HeadBumpFreq/44.1; Float64 BassOutGain = GetParameter( kParam_Three )*fabs(GetParameter( kParam_Three )); Float64 SubBump = 0.0; Float64 SubOutGain = GetParameter( kParam_Four )*fabs(GetParameter( kParam_Four ))*4.0; Float64 clamp = 0.0; Float64 fuzz = 0.111; while (nSampleFrames-- > 0) { long double inputSampleL = *inputL; long double inputSampleR = *inputR; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss ataLowpass = (inputSampleL + inputSampleR) / 2.0; iirDriveSampleA = (iirDriveSampleA * (1.0 - HeadBumpFreq)) + (ataLowpass * HeadBumpFreq); ataLowpass = iirDriveSampleA; iirDriveSampleB = (iirDriveSampleB * (1.0 - HeadBumpFreq)) + (ataLowpass * HeadBumpFreq); ataLowpass = iirDriveSampleB; oscGate += fabs(ataLowpass * 10.0); oscGate -= 0.001; if (oscGate > 1.0) oscGate = 1.0; if (oscGate < 0) oscGate = 0; //got a value that only goes down low when there's silence or near silence on input clamp = 1.0-oscGate; clamp *= 0.00001; //set up the thing to choke off oscillations- belt and suspenders affair if (ataLowpass > 0) {if (WasNegative){SubOctave = not SubOctave;} WasNegative = false;} else {WasNegative = true;} //set up polarities for sub-bass version randy = (rand()/(double)RAND_MAX)*fuzz; //0 to 1 the noise, may not be needed invrandy = (1.0-randy); randy /= 2.0; //set up the noise iirSampleA = (iirSampleA * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleA; iirSampleB = (iirSampleB * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleB; iirSampleC = (iirSampleC * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleC; iirSampleD = (iirSampleD * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleD; iirSampleE = (iirSampleE * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleE; iirSampleF = (iirSampleF * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleF; iirSampleG = (iirSampleG * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleG; iirSampleH = (iirSampleH * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleH; iirSampleI = (iirSampleI * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleI; iirSampleJ = (iirSampleJ * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleJ; iirSampleK = (iirSampleK * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleK; iirSampleL = (iirSampleL * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleL; iirSampleM = (iirSampleM * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleM; iirSampleN = (iirSampleN * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleN; iirSampleO = (iirSampleO * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleO; iirSampleP = (iirSampleP * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleP; iirSampleQ = (iirSampleQ * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleQ; iirSampleR = (iirSampleR * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleR; iirSampleS = (iirSampleS * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleS; iirSampleT = (iirSampleT * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleT; iirSampleU = (iirSampleU * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleU; iirSampleV = (iirSampleV * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleV; switch (bflip) { case 1: iirHeadBumpA += (ataLowpass * BassGain); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpA > 0) iirHeadBumpA -= clamp; if (iirHeadBumpA < 0) iirHeadBumpA += clamp; HeadBump = iirHeadBumpA; break; case 2: iirHeadBumpB += (ataLowpass * BassGain); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpB > 0) iirHeadBumpB -= clamp; if (iirHeadBumpB < 0) iirHeadBumpB += clamp; HeadBump = iirHeadBumpB; break; case 3: iirHeadBumpC += (ataLowpass * BassGain); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); if (iirHeadBumpC > 0) iirHeadBumpC -= clamp; if (iirHeadBumpC < 0) iirHeadBumpC += clamp; HeadBump = iirHeadBumpC; break; } iirSampleW = (iirSampleW * (1.0 - iirAmount)) + (HeadBump * iirAmount); HeadBump -= iirSampleW; iirSampleX = (iirSampleX * (1.0 - iirAmount)) + (HeadBump * iirAmount); HeadBump -= iirSampleX; SubBump = HeadBump; iirSampleY = (iirSampleY * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump -= iirSampleY; iirDriveSampleC = (iirDriveSampleC * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirDriveSampleC; iirDriveSampleD = (iirDriveSampleD * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirDriveSampleD; SubBump = fabs(SubBump); if (SubOctave == false) {SubBump = -SubBump;} switch (bflip) { case 1: iirSubBumpA += SubBump;// * BassGain); iirSubBumpA -= (iirSubBumpA * iirSubBumpA * iirSubBumpA * HeadBumpFreq); iirSubBumpA = (invrandy * iirSubBumpA) + (randy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpA > 0) iirSubBumpA -= clamp; if (iirSubBumpA < 0) iirSubBumpA += clamp; SubBump = iirSubBumpA; break; case 2: iirSubBumpB += SubBump;// * BassGain); iirSubBumpB -= (iirSubBumpB * iirSubBumpB * iirSubBumpB * HeadBumpFreq); iirSubBumpB = (randy * iirSubBumpA) + (invrandy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpB > 0) iirSubBumpB -= clamp; if (iirSubBumpB < 0) iirSubBumpB += clamp; SubBump = iirSubBumpB; break; case 3: iirSubBumpC += SubBump;// * BassGain); iirSubBumpC -= (iirSubBumpC * iirSubBumpC * iirSubBumpC * HeadBumpFreq); iirSubBumpC = (randy * iirSubBumpA) + (randy * iirSubBumpB) + (invrandy * iirSubBumpC); if (iirSubBumpC > 0) iirSubBumpC -= clamp; if (iirSubBumpC < 0) iirSubBumpC += clamp; SubBump = iirSubBumpC; break; } iirSampleZ = (iirSampleZ * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirSampleZ; iirDriveSampleE = (iirDriveSampleE * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump = iirDriveSampleE; iirDriveSampleF = (iirDriveSampleF * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump = iirDriveSampleF; inputSampleL += (HeadBump * BassOutGain); inputSampleL += (SubBump * SubOutGain); inputSampleR += (HeadBump * BassOutGain); inputSampleR += (SubBump * SubOutGain); flip = !flip; bflip++; if (bflip < 1 || bflip > 3) bflip = 1; //stereo 32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((Float32)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *outputL = inputSampleL; *outputR = inputSampleR; //direct stereo out inputL += 1; inputR += 1; outputL += 1; outputR += 1; } return noErr; }