/* * File: Apicolypse.cpp * * Version: 1.0 * * Created: 1/11/20 * * Copyright: Copyright © 2020 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Apicolypse.cpp =============================================================================*/ #include "Apicolypse.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Apicolypse) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::Apicolypse //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Apicolypse::Apicolypse(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Apicolypse::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Apicolypse::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 3.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 3.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Apicolypse::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Apicolypse::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Apicolypse::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Apicolypse::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____ApicolypseEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::ApicolypseKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Apicolypse::ApicolypseKernel::Reset() { for(int count = 0; count < 34; count++) {b[count] = 0;} lastSample = 0.0; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Apicolypse::ApicolypseKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Apicolypse::ApicolypseKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 threshold = GetParameter( kParam_One ); Float64 hardness; Float64 breakup = (1.0-(threshold/2.0))*3.14159265358979; Float64 bridgerectifier; Float64 sqdrive = GetParameter( kParam_Two ); if (sqdrive > 1.0) sqdrive *= sqdrive; sqdrive = sqrt(sqdrive); Float64 indrive = GetParameter( kParam_Three ); if (indrive > 1.0) indrive *= indrive; indrive *= (1.0-(0.008*sqdrive)); //no gain loss of convolution for APIcolypse //calibrate this to match noise level with character at 1.0 //you get for instance 0.819 and 1.0-0.819 is 0.181 Float64 randy; Float64 outlevel = GetParameter( kParam_Four ); if (threshold < 1) hardness = 1.0 / (1.0-threshold); else hardness = 999999999999999999999.0; //set up hardness to exactly fill gap between threshold and 0db //if threshold is literally 1 then hardness is infinite, so we make it very big while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; inputSample *= indrive; //calibrated to match gain through convolution and -0.3 correction if (sqdrive > 0.0){ b[33] = b[32]; b[32] = b[31]; b[31] = b[30]; b[30] = b[29]; b[29] = b[28]; b[28] = b[27]; b[27] = b[26]; b[26] = b[25]; b[25] = b[24]; b[24] = b[23]; b[23] = b[22]; b[22] = b[21]; b[21] = b[20]; b[20] = b[19]; b[19] = b[18]; b[18] = b[17]; b[17] = b[16]; b[16] = b[15]; b[15] = b[14]; b[14] = b[13]; b[13] = b[12]; b[12] = b[11]; b[11] = b[10]; b[10] = b[9]; b[9] = b[8]; b[8] = b[7]; b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = inputSample * sqdrive; inputSample += (b[1] * (0.09299870608542582 - (0.00009582362368873*fabs(b[1])))); inputSample -= (b[2] * (0.11947847710741009 - (0.00004500891602770*fabs(b[2])))); inputSample += (b[3] * (0.09071606264761795 + (0.00005639498984741*fabs(b[3])))); inputSample -= (b[4] * (0.08561982770836980 - (0.00004964855606916*fabs(b[4])))); inputSample += (b[5] * (0.06440549220820363 + (0.00002428052139507*fabs(b[5])))); inputSample -= (b[6] * (0.05987991812840746 + (0.00000101867082290*fabs(b[6])))); inputSample += (b[7] * (0.03980233135839382 + (0.00003312430049041*fabs(b[7])))); inputSample -= (b[8] * (0.03648402630896925 - (0.00002116186381142*fabs(b[8])))); inputSample += (b[9] * (0.01826860869525248 + (0.00003115110025396*fabs(b[9])))); inputSample -= (b[10] * (0.01723968622495364 - (0.00002450634121718*fabs(b[10])))); inputSample += (b[11] * (0.00187588812316724 + (0.00002838206198968*fabs(b[11])))); inputSample -= (b[12] * (0.00381796423957237 - (0.00003155815499462*fabs(b[12])))); inputSample -= (b[13] * (0.00852092214496733 - (0.00001702651162392*fabs(b[13])))); inputSample += (b[14] * (0.00315560292270588 + (0.00002547861676047*fabs(b[14])))); inputSample -= (b[15] * (0.01258630914496868 - (0.00004555319243213*fabs(b[15])))); inputSample += (b[16] * (0.00536435648963575 + (0.00001812393657101*fabs(b[16])))); inputSample -= (b[17] * (0.01272975658159178 - (0.00004103775306121*fabs(b[17])))); inputSample += (b[18] * (0.00403818975172755 + (0.00003764615492871*fabs(b[18])))); inputSample -= (b[19] * (0.01042617366897483 - (0.00003605210426041*fabs(b[19])))); inputSample += (b[20] * (0.00126599583390057 + (0.00004305458668852*fabs(b[20])))); inputSample -= (b[21] * (0.00747876207688339 - (0.00003731207018977*fabs(b[21])))); inputSample -= (b[22] * (0.00149873689175324 - (0.00005086601800791*fabs(b[22])))); inputSample -= (b[23] * (0.00503221309488033 - (0.00003636086782783*fabs(b[23])))); inputSample -= (b[24] * (0.00342998224655821 - (0.00004103091180506*fabs(b[24])))); inputSample -= (b[25] * (0.00355585977903117 - (0.00003698982145400*fabs(b[25])))); inputSample -= (b[26] * (0.00437201792934817 - (0.00002720235666939*fabs(b[26])))); inputSample -= (b[27] * (0.00299217874451556 - (0.00004446954727956*fabs(b[27])))); inputSample -= (b[28] * (0.00457924652487249 - (0.00003859065778860*fabs(b[28])))); inputSample -= (b[29] * (0.00298182934892027 - (0.00002064710931733*fabs(b[29])))); inputSample -= (b[30] * (0.00438838441540584 - (0.00005223008424866*fabs(b[30])))); inputSample -= (b[31] * (0.00323984218794705 - (0.00003397987535887*fabs(b[31])))); inputSample -= (b[32] * (0.00407693981307314 - (0.00003935772436894*fabs(b[32])))); inputSample -= (b[33] * (0.00350435348467321 - (0.00005525463935338*fabs(b[33]))));} //we apply the first 28 samples of the Neve impulse- dynamically adjusted. if (fabs(inputSample) > threshold) { bridgerectifier = (fabs(inputSample)-threshold)*hardness; //skip flat area if any, scale to distortion limit if (bridgerectifier > breakup) bridgerectifier = breakup; //max value for sine function, 'breakup' modeling for trashed console tone //more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag bridgerectifier = sin(bridgerectifier)/hardness; //do the sine factor, scale back to proper amount if (inputSample > 0) inputSample = bridgerectifier+threshold; else inputSample = -(bridgerectifier+threshold); } //otherwise we leave it untouched by the overdrive stuff randy = ((rand()/(double)RAND_MAX)*0.033); inputSample = ((inputSample*(1-randy))+(lastSample*randy)) * outlevel; lastSample = inputSample; //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }