/* * File: ADClip7.cpp * * Version: 1.0 * * Created: 8/2/17 * * Copyright: Copyright © 2017 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= ADClip7.cpp =============================================================================*/ #include "ADClip7.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(ADClip7) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::ADClip7 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ADClip7::ADClip7(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ADClip7::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { if ((inScope == kAudioUnitScope_Global) && (inParameterID == kParam_Four)) //ID must be actual name of parameter identifier, not number { if (outStrings == NULL) return noErr; CFStringRef strings [] = { kMenuItem_Normal, kMenuItem_Gain, kMenuItem_Clip, }; *outStrings = CFArrayCreate ( NULL, (const void **) strings, (sizeof (strings) / sizeof (strings [0])), NULL ); return noErr; } return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ADClip7::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 18.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Indexed; outParameterInfo.minValue = kNormal; outParameterInfo.maxValue = kClip; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ADClip7::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ADClip7::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // ADClip7::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ADClip7::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____ADClip7EffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::ADClip7Kernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void ADClip7::ADClip7Kernel::Reset() { lastSample = 0.0; for(int count = 0; count < 22199; count++) {b[count] = 0;} gcount = 0; lows = 0; refclip = 0.99; iirLowsA = 0.0; iirLowsB = 0.0; fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ADClip7::ADClip7Kernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void ADClip7::ADClip7Kernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 fpOld = 0.618033988749894848204586; //golden ratio! Float64 fpNew = 1.0 - fpOld; Float64 inputGain = pow(10.0,(GetParameter( kParam_One ))/20.0); Float64 softness = GetParameter( kParam_Two ) * fpNew; Float64 hardness = 1.0 - softness; Float64 highslift = 0.307 * GetParameter( kParam_Three ); Float64 adjust = pow(highslift,3) * 0.416; Float64 subslift = 0.796 * GetParameter( kParam_Three ); Float64 calibsubs = subslift/53; Float64 invcalibsubs = 1.0 - calibsubs; Float64 subs = 0.81 + (calibsubs*2); long double bridgerectifier; int mode = (int) GetParameter( kParam_Four ); Float64 overshoot; Float64 offsetH1 = 1.84; offsetH1 *= overallscale; Float64 offsetH2 = offsetH1 * 1.9; Float64 offsetH3 = offsetH1 * 2.7; Float64 offsetL1 = 612; offsetL1 *= overallscale; Float64 offsetL2 = offsetL1 * 2.0; int refH1 = (int)floor(offsetH1); int refH2 = (int)floor(offsetH2); int refH3 = (int)floor(offsetH3); int refL1 = (int)floor(offsetL1); int refL2 = (int)floor(offsetL2); int temp; Float64 fractionH1 = offsetH1 - floor(offsetH1); Float64 fractionH2 = offsetH2 - floor(offsetH2); Float64 fractionH3 = offsetH3 - floor(offsetH3); Float64 minusH1 = 1.0 - fractionH1; Float64 minusH2 = 1.0 - fractionH2; Float64 minusH3 = 1.0 - fractionH3; Float64 highs = 0.0; int count = 0; long double inputSample; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } if (inputGain != 1.0) { inputSample *= inputGain; } overshoot = fabs(inputSample) - refclip; if (overshoot < 0.0) overshoot = 0.0; if (gcount < 0 || gcount > 11020) {gcount = 11020;} count = gcount; b[count+11020] = b[count] = overshoot; gcount--; if (highslift > 0.0) { //we have a big pile of b[] which is overshoots temp = count+refH3; highs = -(b[temp] * minusH3); //less as value moves away from .0 highs -= b[temp+1]; //we can assume always using this in one way or another? highs -= (b[temp+2] * fractionH3); //greater as value moves away from .0 highs += (((b[temp]-b[temp+1])-(b[temp+1]-b[temp+2]))/50); //interpolation hacks 'r us highs *= adjust; //add in the kernel elements backwards saves multiplies //stage 3 is a negative add temp = count+refH2; highs += (b[temp] * minusH2); //less as value moves away from .0 highs += b[temp+1]; //we can assume always using this in one way or another? highs += (b[temp+2] * fractionH2); //greater as value moves away from .0 highs -= (((b[temp]-b[temp+1])-(b[temp+1]-b[temp+2]))/50); //interpolation hacks 'r us highs *= adjust; //add in the kernel elements backwards saves multiplies //stage 2 is a positive feedback of the overshoot temp = count+refH1; highs -= (b[temp] * minusH1); //less as value moves away from .0 highs -= b[temp+1]; //we can assume always using this in one way or another? highs -= (b[temp+2] * fractionH1); //greater as value moves away from .0 highs += (((b[temp]-b[temp+1])-(b[temp+1]-b[temp+2]))/50); //interpolation hacks 'r us highs *= adjust; //add in the kernel elements backwards saves multiplies //stage 1 is a negative feedback of the overshoot //done with interpolated mostly negative feedback of the overshoot } bridgerectifier = sin(fabs(highs) * hardness); //this will wrap around and is scaled back by softness //wrap around is the same principle as Fracture: no top limit to sin() if (highs > 0) highs = bridgerectifier; else highs = -bridgerectifier; if (subslift > 0.0) { lows *= subs; //going in we'll reel back some of the swing temp = count+refL1; lows -= b[temp+127]; lows -= b[temp+113]; lows -= b[temp+109]; lows -= b[temp+107]; lows -= b[temp+103]; lows -= b[temp+101]; lows -= b[temp+97]; lows -= b[temp+89]; lows -= b[temp+83]; lows -= b[temp+79]; lows -= b[temp+73]; lows -= b[temp+71]; lows -= b[temp+67]; lows -= b[temp+61]; lows -= b[temp+59]; lows -= b[temp+53]; lows -= b[temp+47]; lows -= b[temp+43]; lows -= b[temp+41]; lows -= b[temp+37]; lows -= b[temp+31]; lows -= b[temp+29]; lows -= b[temp+23]; lows -= b[temp+19]; lows -= b[temp+17]; lows -= b[temp+13]; lows -= b[temp+11]; lows -= b[temp+7]; lows -= b[temp+5]; lows -= b[temp+3]; lows -= b[temp+2]; lows -= b[temp+1]; //initial negative lobe lows *= subs; lows *= subs; //twice, to minimize the suckout in low boost situations temp = count+refL2; lows += b[temp+127]; lows += b[temp+113]; lows += b[temp+109]; lows += b[temp+107]; lows += b[temp+103]; lows += b[temp+101]; lows += b[temp+97]; lows += b[temp+89]; lows += b[temp+83]; lows += b[temp+79]; lows += b[temp+73]; lows += b[temp+71]; lows += b[temp+67]; lows += b[temp+61]; lows += b[temp+59]; lows += b[temp+53]; lows += b[temp+47]; lows += b[temp+43]; lows += b[temp+41]; lows += b[temp+37]; lows += b[temp+31]; lows += b[temp+29]; lows += b[temp+23]; lows += b[temp+19]; lows += b[temp+17]; lows += b[temp+13]; lows += b[temp+11]; lows += b[temp+7]; lows += b[temp+5]; lows += b[temp+3]; lows += b[temp+2]; lows += b[temp+1]; lows *= subs; //followup positive lobe //now we have the lows content to use } bridgerectifier = sin(fabs(lows) * softness); //this will wrap around and is scaled back by hardness: hard = less bass push, more treble //wrap around is the same principle as Fracture: no top limit to sin() if (lows > 0) lows = bridgerectifier; else lows = -bridgerectifier; iirLowsA = (iirLowsA * invcalibsubs) + (lows * calibsubs); lows = iirLowsA; bridgerectifier = sin(fabs(lows)); if (lows > 0) lows = bridgerectifier; else lows = -bridgerectifier; iirLowsB = (iirLowsB * invcalibsubs) + (lows * calibsubs); lows = iirLowsB; bridgerectifier = sin(fabs(lows)) * 2.0; if (lows > 0) lows = bridgerectifier; else lows = -bridgerectifier; if (highslift > 0.0) inputSample += (highs * (1.0-fabs(inputSample*hardness))); if (subslift > 0.0) inputSample += (lows * (1.0-fabs(inputSample*softness))); if (inputSample > refclip && refclip > 0.9) refclip -= 0.01; if (inputSample < -refclip && refclip > 0.9) refclip -= 0.01; if (refclip < 0.99) refclip += 0.00001; //adjust clip level on the fly if (lastSample >= refclip) { if (inputSample < refclip) lastSample = ((refclip*hardness) + (inputSample * softness)); else lastSample = refclip; } if (lastSample <= -refclip) { if (inputSample > -refclip) lastSample = ((-refclip*hardness) + (inputSample * softness)); else lastSample = -refclip; } if (inputSample > refclip) { if (lastSample < refclip) inputSample = ((refclip*hardness) + (lastSample * softness)); else inputSample = refclip; } if (inputSample < -refclip) { if (lastSample > -refclip) inputSample = ((-refclip*hardness) + (lastSample * softness)); else inputSample = -refclip; } lastSample = inputSample; switch (mode) { case 1: break; //Normal case 2: inputSample /= inputGain; break; //Gain Match case 3: inputSample = overshoot + highs + lows; break; //Clip Only } //this is our output mode switch, showing the effects if (inputSample > refclip) inputSample = refclip; if (inputSample < -refclip) inputSample = -refclip; //final iron bar //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }