/* ======================================== * NotJustAnotherDither - NotJustAnotherDither.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __NotJustAnotherDither_H #include "NotJustAnotherDither.h" #endif void NotJustAnotherDither::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; long double inputSampleL; long double inputSampleR; double benfordize; int hotbinA; int hotbinB; double totalA; double totalB; float drySampleL; float drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL -= noiseShapingL; inputSampleR -= noiseShapingR; inputSampleL *= 8388608.0; inputSampleR *= 8388608.0; //0-1 is now one bit, now we dither //begin L benfordize = floor(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynL[hotbinA] += 1; inputSampleL = floor(inputSampleL); } else { bynL[hotbinB] += 1; inputSampleL = ceil(inputSampleL); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynL[1] + bynL[2] + bynL[3] + bynL[4] + bynL[5] + bynL[6] + bynL[7] + bynL[8] + bynL[9]; totalA /= 1000; if (totalA = 0) totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynL[1] /= totalA; bynL[2] /= totalA; bynL[3] /= totalA; bynL[4] /= totalA; bynL[5] /= totalA; bynL[6] /= totalA; bynL[7] /= totalA; bynL[8] /= totalA; bynL[9] /= totalA; bynL[10] /= 2; //catchall for garbage data //end L //begin R benfordize = floor(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynR[hotbinA] += 1; inputSampleR = floor(inputSampleR); } else { bynR[hotbinB] += 1; inputSampleR = ceil(inputSampleR); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynR[1] + bynR[2] + bynR[3] + bynR[4] + bynR[5] + bynR[6] + bynR[7] + bynR[8] + bynR[9]; totalA /= 1000; if (totalA = 0) totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynR[1] /= totalA; bynR[2] /= totalA; bynR[3] /= totalA; bynR[4] /= totalA; bynR[5] /= totalA; bynR[6] /= totalA; bynR[7] /= totalA; bynR[8] /= totalA; bynR[9] /= totalA; bynR[10] /= 2; //catchall for garbage data //end R inputSampleL /= 8388608.0; inputSampleR /= 8388608.0; noiseShapingL += inputSampleL - drySampleL; noiseShapingR += inputSampleR - drySampleR; *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void NotJustAnotherDither::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; long double inputSampleL; long double inputSampleR; double benfordize; int hotbinA; int hotbinB; double totalA; double totalB; double drySampleL; double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL -= noiseShapingL; inputSampleR -= noiseShapingR; inputSampleL *= 8388608.0; inputSampleR *= 8388608.0; //0-1 is now one bit, now we dither //begin L benfordize = floor(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynL[hotbinA] += 1; inputSampleL = floor(inputSampleL); } else { bynL[hotbinB] += 1; inputSampleL = ceil(inputSampleL); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynL[1] + bynL[2] + bynL[3] + bynL[4] + bynL[5] + bynL[6] + bynL[7] + bynL[8] + bynL[9]; totalA /= 1000; if (totalA = 0) totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynL[1] /= totalA; bynL[2] /= totalA; bynL[3] /= totalA; bynL[4] /= totalA; bynL[5] /= totalA; bynL[6] /= totalA; bynL[7] /= totalA; bynL[8] /= totalA; bynL[9] /= totalA; bynL[10] /= 2; //catchall for garbage data //end L //begin R benfordize = floor(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynR[hotbinA] += 1; inputSampleR = floor(inputSampleR); } else { bynR[hotbinB] += 1; inputSampleR = ceil(inputSampleR); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynR[1] + bynR[2] + bynR[3] + bynR[4] + bynR[5] + bynR[6] + bynR[7] + bynR[8] + bynR[9]; totalA /= 1000; if (totalA = 0) totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynR[1] /= totalA; bynR[2] /= totalA; bynR[3] /= totalA; bynR[4] /= totalA; bynR[5] /= totalA; bynR[6] /= totalA; bynR[7] /= totalA; bynR[8] /= totalA; bynR[9] /= totalA; bynR[10] /= 2; //catchall for garbage data //end R inputSampleL /= 8388608.0; inputSampleR /= 8388608.0; noiseShapingL += inputSampleL - drySampleL; noiseShapingR += inputSampleR - drySampleR; *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }